How to Parallelize Your Workflows Using PlantCV

This guide provides step-by-step instructions on how to parallelize workflows using
PlantCV. By following these steps, users can optimize their workflow efficiency and
increase productivity.

1 Often you will start with a workflow from another tutorial that you will have then
edited to work well for your experiment. Here we assume that you start with an
.ipynb workflow that runs without errors on several representative test images.

NOTE: Make sure you have ran your workflow and have produced a JSON output

file.

File Edit View

JupyterLab

Run Kernel Tabs Settings Help

1+ = 4 Launcher

Filter files by name

i/

Name

B imgs

(%] multi-plant...
(™ plot_results...
[M] START-HER...

Last Modified
2 minutes ago

7 minutes ago

Name: multi-plant-workflow-reference.ipynb
Size: 3.2 MB

Created: 5/7/24, 5:12 AM

Modified: 5/7/24, 5:07 AM

Writable: true

Made with Scribe - https://scribehow.com

E Notebook

4 4

Python 3 Python (PlantCV)
(ipykernel)

2. Console

e 4

multi-plant-... - JupyterLab

Run Kernel Tabs Settings Help

[Z Launcher X
B + X

(Wl multi-plant-workflow-referer X | +

o8 » =n cl »

Code v

%matplotlib widget
S 68
Last Modified plantcv plantcv pcv
2 minutes ago plantcv.parallel : WorkflowInputs
args = WorkflowInputs(images=| .9.1.29 pos 9-10-26-19-
names="1
result="
outdir="img

7 hours ago

10 minutes ago

writeimg
debug

outdir = args.outdir
args.d

=50

2 Convert your Jupyter Notebook (.ipynb) to an executable script (a Python script,
.py) selecting File > Save and Export Notebook As... > Executable Script

Save your Python script in the same directory as your Jupyter notebook for easy
access. You may need to adjust the title of your script so it is concise (in the
example, I am using a reference document and do not want "reference" in my
final script.

multi-plant-... - JupyterLab

File* Edit View Run Kernel Tabs Settings Help

B * c [Z Launcher X

[®] multi-plant-workflow-referer ® | +

B + X DO » m C » Code v

Filter files by name o}

Wi [1]: | %matplotlib widget
] Ort 0s
plantcv plantcv pcv

plantcv.parallel : = WorkflowInputs

Name Last Modified

B imgs 3 minutes ago

{:} data_outpu...

L]

[®] plot_results...

[START-HER...

6 seconds ago

7 hours ago

11 minutes ago

args = WorkflowInputs(images=["./
names="
result
outdir
writeimg=F
debug="plot™)

Made with Scribe - https://scribehow.com

Close Tab
Close and Shut Down Notebook
Close All Tabs

Save Notebook
Save Notebook As...
Save All

Reload Notebook from Disk
Revert Notebook to Checkpoint...
Rename Notebook...

Duplicate Notebook
Download
Save and Export Notebook As...

Save Current Workspace As...

Save Current Workspace

earch (\\nas

vork

Alt+W
Ctrl+Shift+Q

Ctrl+S
Ctrl+Shift+S

gs

Asciidoc

HTML

LaTeX

Markdown

PDF

Qtpdf

Qtpng
ReStpuctured Text
Exetutable/ Script
Reveal js Slides

Webpdf

5/7/2024 5:12 AM

le name: | multi-plant-workflow

b as type: multi-plant-workflow-reference.ipynb

WorkflowInputs(images=["

names="1im:

result-"d:

filename=args.i

s
<

File folder

tCV) | Idle

Made with Scribe - https://scribehow.com

Mode: Command

@

Ln 1, Col 1

Figure 1

Mode: Command @
£

multi-plant-workflow-reference.ip

ENG & dx (@

3 Open your new Python script. We will have to make some edits to make it a
functioning workflow script.

The first thing we will want to do is "comment out" things we do not want to run in
parallel. In the example image this would mean adding an "#" ahead of line 7:
get_python().run_line_magic(‘'matplotlib’, 'widget’)

For your workflow you may also want to comment out commands that only print
images or that look for google colab environments.

multi-plant-... (2) - JupyterLab

File Edit View Run Kernel Tabs Settings Help

B t C [4 Launcher X [A] multi-plant-workflow-referer X multi-

Filter files by name Q
o/

Name Last Modified

B imgs 4 minutes ago .
get_ipython().run_line c('matplotlib', 'w

{:} data_outpu... 1 minute ago : o

1l
2
3
4
5
6
7
&
9

plantcv import plantcv as pcv
plantcv.parallel import WorkflowInputs

(A multi-plant... 59 seconds ago
L

(W] plot_results... 7 hours ago
[R] START-HER... 12 minutes ago

B R R R R
A WNRO®

args = WorkflowInputs(images=["./
names="1in
result

Made with Scribe - https://scribehow.com

4 We need to make a change to our import statements to say:

from plantcv.parallel import workflow_inputs in place of from plantcv.parallel
import WorkflowInputs

This will tell the parallel process to use workflow_inputs() to set parameters based

on the configuration JSON file instead of using the hard coded arguments from
the notebook.

[4 Launcher X

[®] multi-plant-workflow-referer X

multi-plant-workflow.py ®

t os
plantcv _import
m plantcv.parallel

O 00 N O V1 B W N

[

t workflow_inputs||

=
=

5 Next, we will change our argument definitions for this workflow by "commenting
out" the our WorkflowInputs parameters. Remember that you can comment out
an entire section by using CTRL or Cmd + / in jupyter.

See the image below:

» [A] multi-plant...

Name

B imgs

{3} data_outpu...

™

(M plot_results...
[®] START-HER...

Last Modified
4 minutes ago
1 minute ago

1 minute ago

7 hours ago

12 minutes ago

"t os

plantcv i rt plantcv as pcv

from plantcv.parallel imp

args = WorkflowInputs(images=[".

Made with Scribe - https://scribehow.com

names="
result="
outdir
writeimg
debug="plot™)

ares.outdir

“t workflow_inputs]|

Name

B imgs

{3} data_outpu...

(™| multi-plant...
L

[®] plot_results...

W] START-HER...

Last Modified
4 minutes ago
1 minute ago

1 minute ago

7 hours ago

12 minutes ago

"t 0s

1 plantcv import plantcv as

n plantcv.parallel i

pcv

t workflow_inputs

6 Above the commented out WorkflowInputs, we are going to add a new line that
will store workflow inputs into args to support parallel workflow execution:

args = workflow_inputs()

7

Last Modified
4 minutes ago
1 minute ago

1 minute ago

7 hours ago

12 minutes ago

n plantcv

t plantcv as

rom plantcv.parallel import

args

workflow_inputs()

pcv
workflow_inputs

Save the changes you made to your Python script.

Made with Scribe - https://scribehow.com

multi-plant-... (2) - JupyterLab

File Edit View Run Kernel Tabs Settings Help

B 1 C [Z Launcher X Al multi-plant-workflow-referer X multi-

Filter files by name Q
m/

Name Last Modified
B imgs 5 minutes ago

{3} data_outpu... 1 minute ago import os

from plantcv import plantcv as pcv
m plantcv.parallel import workflow_inputs

O 00 ~N O bW N

(A multi-plant... 1 minute ago
L

(W] plot_results... 7 hours ago
[A] START-HER... 13 minutes ago

R R R R R R R
oWk WNR®

args = workflow_inputs()

2R
00 N

Open from Path...
Open from URL...

New View for Python File

Create Console for Editor

Close Tab Alt+W
Close and Shut Down Ctrl+Shift+Q
Close All Tabs

tv import plantcv as pcv
fv.parallel import workflow_inputs

Save Python File Ctrl+S
Save Python File As... Ctrl+Shift+S

Save All (flow_inputs()

Reload Python File from Disk
Revert Python File to Checkpoint...
Rename Python File...

Duplicate Python File

Download

@ In the next step we will have to change the working directory in terminal to the
location where our scripts are. There are a couple of ways to obtain the file path
for your working directory:

1. In Jupyter if you hover over the folder icon in the file browser it will show the working
directory.

2. In Jupyter you can open a terminal and run “pwd’ to print the working directory.

NOTE: You may want to copy the file path to a document so you can see how
much of the file path is copied (the full file path will not be copied).

Made with Scribe - https://scribehow.com

8 In this guide, the current working directory is local to the root directory, so only a
portion of the path was needed to point our conda environment to the current
working directory. Remember that to change directories, you need to use the
operator cd (See image below, outlined in green).

Once you have changed your working directory in conda, type dir or Is to view the
contents of the directory. Make sure that your Python script is in the correct
location. (See image below, outlined in orange).

plantcv) C:\Users\pbhatt\Documents>cd .\Workshop\Multi-Plant-Parallelization-Tutorial

(plantcv) C:\Users\pbhatt\Documents\Workshop\Multi-Plant-Parallelization-Tutorial>dir
Volume in drive C has no label.
Volume Serial Number is 769C-CE5C

Directory of C:\Users\pbhatt\Documents\Workshop\Multi-Plant-Parallelization-Tutorial

05:17 AM <DIR>
05:12 AM <DIR> co
@5:17 AM <DIR> .ipynb_checkpoints
05:14 AM <DIR> .jupyter
05:16 AM 69,252 data_output.json
05:12 AM <DIR> i
05:16 AM
05:17 AM
10:03 PM
85:04 AM 4,501 START- HERE mu1t1 plant -workflow.ipynb
5 File(s) 3,394,951 bytes
5 Dir(s) 184,838,848,512 bytes free

9 Now we need to create our parallel configuration file by typing:

plantcv-run-workflow --template config.json

Since we have changed our working directory to our current folder, you should
see config.json appear in the file explorer like shown below.

™ Anaconda Prompt (miniconda3)

(plantcv) C:\Users\pbhatt\Documents\Workshop\Multi-Plant-Parallelization-Tutorial>plantcv-run-workflow --template config.json

10 Since we have changed our working directory to our current folder, you should
see config.json appear in the file explorer like shown below.

We will need to edit config.json so that we can configure the parallel analysis.

Right-click config.json and hover over Open With and select Editor to make
changes to the file.

Made with Scribe - https://scribehow.com

File Edit

Filter files by name

I
Name
B imgs

{2} config.json

{:} data-eltpu...

"] multi-plant...

L]

(™ plot_results...
[A] START-HER...

Edit - Qpen
Open With

View Run

Kernel

c

Q

Last Modified
7 minutes ago
10 seconds ago
3 minutes ago

3 minutes ago

7 hours ago

15 minutes ago

Open in New Browser Tab

/" Rename
Delete
Cut
Copy
Paste
Duplicate

¥ Download

Tabs

Copy Download Link
Copy Path
Copy Shareable Link

New File
New Notebook

New Folder

Made with Scribe - https://scribehow.com

F2

Del
Ctrl+X
Ctrl+C
Ctrl+V
Ctrl+D

Settings

[Z Launcher

B + X

[EINIEE

Help

O 80 » m C » Code v

%matplotlib widget
os
plantcv

plantcv pcv

plantcv.parallel WorkflowInputs

args = WorkflowInputs(images=["
names="1
result
outdir
writeimg
debug-"plot™)

dir args.outdir
args.debug

multi-plant-... - JupyterLab

#FISON
Editor

&l Vega5

&l Vega-Lite5

os

ylantcv plantcv
rlantcv.parallel impc

plant-workflow-referer X | +

Code v

pcv
WorkflowInputs

WorkflowInputs(images

result=’
outdir-' output”,
writeimg=Fz 5
debug="plot")

X | [A] multi-plant-workflow-referer X | +

11

In Editor, make changes to config.json , common things that should be changed
are listed below but the full set of options is in the documentation and is worth
reviewing.

* "input_dir": "./imgs" [Put file path/name of input directory for images you want analyzed]

* "json": "data_output.json" [Put the path/name of the data output file (located in the args
container under results within your workflow)]

« "filename_metadata™: ["camera”, "id", "timestamp"] [list of metadata terms to collect.
Supported metadata terms include: camera, imgtype, zoom, exposure, gain, frame, lifter,
timestamp, id, plantbarcode, treatment, cartag, measurementlabel, and other]

« "workflow": "multi-plant-workflow.py" [path/name of user-defined (your) PlantCV workflow
Python script]

* "img_outdir": "./output_images" [path/name of output directory where measured images will
be stored. Default is "./output_images"]

* "imgformat": "jpg" [image file format/extension. Default is "png"]

« "timestampformat"; "%Y-%m-%d-%H-%M" [date format as observed in your naming scheme.

For explanation what each of the symbols mean, see the python time format documentation

I

« "append": false [(bool, default = False): if True will append results to an existing json file. If
False, will delete previous results stored in the specified /SON file.]

* "cluster": "LocalCluster" [There are several cluster types, the default option is "LocalCluster"
which will run in parallel on the machine you run the run workflow command from. The
complete list of options is: "LocalCluster"”, "HTCondorCluster", "LSFCluster",
"MoabCluster”, "OARCluster", "PBSCluster", "SGECluster", and "SLURMCluster"
which can be read about in the dask docs.]

* cluster_config:

* n_workers: In the example below this is still 1, but you will increase this based on how
many cores you have available/want to use. This controls the number of workers to run in
parallel. The "cores" argument is how many cores each worker needs, which will almost always
stay as 1.

Made with Scribe - https://scribehow.com

10

https://plantcv.readthedocs.io/en/stable/parallel_config/
https://docs.python.org/3.7/library/datetime.html#strftime-and-strptime-behavior
https://jobqueue.dask.org/

input_dir": "./imgs",

"json": "data_output.json",

“filename_metadata”: ["camera", "id", "timestamp"],
rkfle "multi-plant-workflow.py",
g outdir stput_images”,

"include_all _

1
2.
&l
4
5
6
7
8
9

etadata_filters

‘groupby”: [
"filepath"

12 Save the changes you have made to the config.json

configjson (2) - JupyterLab conda: jlab_server
File}] Edit View Run Kernel Tabs Settings Help
r T & Launcher [A] multi-plant-workflow-referer X config,json

Filter fil
-/

Name Last Modified

M imgs 8 minutes ago

£}

{:} data_outpu... 5 minutes ago
«] multi-plant... 5 minutes ago

@ multi-plant... 3 minutes ago

[® plot_results... 7 hours ago

[®] START-HER... 16 minutes ago

Made with Scribe - https://scribehow.com

11

Open from Path...

Open from URL...

"timestamp"
New View for JSON File

Create Console for Editor

Close Tab Alt+W -
: : null,

Close and Shut Down Ctrl+Shift+Q e": null,

Close All Tabs j

Save (J\SONﬁhe Ctrl+S
Save JSON File As... Ctrl+Shift+S
Save All

Reload JSON File from Disk
Revert JSON File to Checkpoint...
Rename JSON File...

Duplicate JSON File

Download

13 Now that we have made the necessary changes to our parallel configuration file, it
is time for us to run our workflow. To execute your parallel analysis, return to your
terminal and type plantcv-run-workflow --config config.json into the prompt.

(plantcv) C:\Users\pbhatt\Documents\Workshop\Multi-Plant-Parallelization-Tutorial>plantcv-run-workflow --config config.jsong

& If you successfully set up your config.json then you should see a number of files
found and a progress bar on your screen with how long it will take to analyze your
dataset. You will also see that your job list will include X workflows.

If you did not set up your config.json then you will receive error messages that
detail where PlantCV is having issues finding an image directory, your workflow,
incorrect date formats, etc.

After the job has completed, PlantCV will automatically convert your JSON file to
Csv.

ion-Tutorial> ig confi

9966106414794

ok ©.11158013343811035 se

Completed | 19.2sl i Shrinking radius to ROIs fit in the image
X C | Z rning: s to make ROIs fit in the image

Multi-Plant-Parallelization-Tutorial>

Made with Scribe - https://scribehow.com

14 You should see two CSV files appear in your directory:

» plantcv-results-single-value-traits.csv
» plantcv-results-multi-value-traits.csv

The single-value-traits.csv file will be in wide format, with a column per trait,
whereas the multi-value-traits.csv file will be in long format, with one row per
value/label. The hierarchical organization of these files enable more efficient data
processing downstream.

File Edit View Run Kernel Tabs

*

Filter files by name

Made with Scribe - https://scribehow.com

./

Name

B imgs

B8 output_ima...

{:} configjson

{}

™| multi-plant...

@ multi-plant...
plantcv-res...
plantcv-res...

(M plot_results...

["] START-HER...

Last Modified
13 minutes ago
4 minutes ago

4 minutes ago

10 minutes ago

8 minutes ago
24 seconds ago
24 seconds ago

7 hours ago

21 minutes ago

13

