
Made with Scribe - https://scribehow.com 1

How to Parallelize Your Workflows Using PlantCV
This guide provides step-by-step instructions on how to parallelize workflows using
PlantCV. By following these steps, users can optimize their workflow efficiency and
increase productivity.

1 Often you will start with a workflow from another tutorial that you will have then
edited to work well for your experiment. Here we assume that you start with an
.ipynb workflow that runs without errors on several representative test images.

NOTE: Make sure you have ran your workflow and have produced a JSON output
file.

Made with Scribe - https://scribehow.com 2

2 Convert your Jupyter Notebook (.ipynb) to an executable script (a Python script,
.py) selecting File > Save and Export Notebook As... > Executable Script

Save your Python script in the same directory as your Jupyter notebook for easy
access. You may need to adjust the title of your script so it is concise (in the
example, I am using a reference document and do not want "reference" in my
final script.

Made with Scribe - https://scribehow.com 3

Made with Scribe - https://scribehow.com 4

3 Open your new Python script. We will have to make some edits to make it a
functioning workflow script.

The first thing we will want to do is "comment out" things we do not want to run in
parallel. In the example image this would mean adding an "#" ahead of line 7:
get_python().run_line_magic('matplotlib', 'widget')

For your workflow you may also want to comment out commands that only print
images or that look for google colab environments.

Made with Scribe - https://scribehow.com 5

4 We need to make a change to our import statements to say:

from plantcv.parallel import workflow_inputs in place of from plantcv.parallel
import WorkflowInputs

This will tell the parallel process to use workflow_inputs() to set parameters based
on the configuration JSON file instead of using the hard coded arguments from
the notebook.

5 Next, we will change our argument definitions for this workflow by "commenting
out" the our WorkflowInputs parameters. Remember that you can comment out
an entire section by using CTRL or Cmd + / in jupyter.

See the image below:

Made with Scribe - https://scribehow.com 6

6 Above the commented out WorkflowInputs, we are going to add a new line that
will store workflow inputs into args to support parallel workflow execution:

args = workflow_inputs()

7 Save the changes you made to your Python script.

Made with Scribe - https://scribehow.com 7

In the next step we will have to change the working directory in terminal to the
location where our scripts are. There are a couple of ways to obtain the file path
for your working directory:

 1. In Jupyter if you hover over the folder icon in the file browser it will show the working
directory.

 2. In Jupyter you can open a terminal and run `pwd` to print the working directory.

NOTE: You may want to copy the file path to a document so you can see how
much of the file path is copied (the full file path will not be copied).

Made with Scribe - https://scribehow.com 8

8 In this guide, the current working directory is local to the root directory, so only a
portion of the path was needed to point our conda environment to the current
working directory. Remember that to change directories, you need to use the
operator cd (See image below, outlined in green).

Once you have changed your working directory in conda, type dir or ls to view the
contents of the directory. Make sure that your Python script is in the correct
location. (See image below, outlined in orange).

9 Now we need to create our parallel configuration file by typing:

plantcv-run-workflow --template config.json

Since we have changed our working directory to our current folder, you should
see config.json appear in the file explorer like shown below.

10 Since we have changed our working directory to our current folder, you should
see config.json appear in the file explorer like shown below.

We will need to edit config.json so that we can configure the parallel analysis.
Right-click config.json and hover over Open With and select Editor to make
changes to the file.

Made with Scribe - https://scribehow.com 9

Made with Scribe - https://scribehow.com 10

11 In Editor, make changes to config.json , common things that should be changed
are listed below but the full set of options is in the documentation and is worth
reviewing.

 • "input_dir": "./imgs" [Put file path/name of input directory for images you want analyzed]

 • "json": "data_output.json" [Put the path/name of the data output file (located in the args
container under results within your workflow)]

 • "filename_metadata": ["camera", "id", "timestamp"] [list of metadata terms to collect.
Supported metadata terms include: camera, imgtype, zoom, exposure, gain, frame, lifter,
timestamp, id, plantbarcode, treatment, cartag, measurementlabel, and other]

 • "workflow": "multi-plant-workflow.py" [path/name of user-defined (your) PlantCV workflow
Python script]

 • "img_outdir": "./output_images" [path/name of output directory where measured images will
be stored. Default is "./output_images"]

 • "imgformat": "jpg" [image file format/extension. Default is "png"]

 • "timestampformat": "%Y-%m-%d-%H-%M" [date format as observed in your naming scheme.
For explanation what each of the symbols mean, see the python time format documentation
]

 • "append": false [(bool, default = False): if True will append results to an existing json file. If
False, will delete previous results stored in the specified JSON file.]

 • "cluster": "LocalCluster" [There are several cluster types, the default option is "LocalCluster"
which will run in parallel on the machine you run the run workflow command from. The
complete list of options is: "LocalCluster", "HTCondorCluster", "LSFCluster",
"MoabCluster", "OARCluster", "PBSCluster", "SGECluster", and "SLURMCluster"
which can be read about in the dask docs.]

 • cluster_config:

 • n_workers: In the example below this is still 1, but you will increase this based on how
many cores you have available/want to use. This controls the number of workers to run in
parallel. The "cores" argument is how many cores each worker needs, which will almost always
stay as 1.

https://plantcv.readthedocs.io/en/stable/parallel_config/
https://docs.python.org/3.7/library/datetime.html#strftime-and-strptime-behavior
https://jobqueue.dask.org/

Made with Scribe - https://scribehow.com 11

12 Save the changes you have made to the config.json

Made with Scribe - https://scribehow.com 12

13 Now that we have made the necessary changes to our parallel configuration file, it
is time for us to run our workflow. To execute your parallel analysis, return to your
terminal and type plantcv-run-workflow --config config.json into the prompt.

If you successfully set up your config.json then you should see a number of files
found and a progress bar on your screen with how long it will take to analyze your
dataset. You will also see that your job list will include X workflows.

If you did not set up your config.json then you will receive error messages that
detail where PlantCV is having issues finding an image directory, your workflow,
incorrect date formats, etc.

After the job has completed, PlantCV will automatically convert your JSON file to
CSV.

Made with Scribe - https://scribehow.com 13

14 You should see two CSV files appear in your directory:

 • plantcv-results-single-value-traits.csv

 • plantcv-results-multi-value-traits.csv

The single-value-traits.csv file will be in wide format, with a column per trait,
whereas the multi-value-traits.csv file will be in long format, with one row per
value/label. The hierarchical organization of these files enable more efficient data
processing downstream.

