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PlantCV

* PlantCV Is an open-source python-based image
analysis software developed initially by Malia
Gehan and Noah Fahlgren and maintained by
their labs and others.

PlantCV: Plant Computer Vision

PlantCV is an open-source image analysis software package, specifically for plant science. Use
PlantCV to measure plant traits (aka phenotypes) from images. The project is made possible by
the effort of many generous contributors, collaborators, and users, and is managed by Malia

Gehan and Noah Fahlgren.

Usage Statistics

Publications 1139 Latest Version v4.5 GitHub contributors '57

conda downloads 128k PyPl downloads [180/day
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PlantCV

* PlantCV extracts numeric phenotypes from
Images, with a variety of shape/size/color data

avallable.

 Sometimes the data-science core would get
feedback requesting support for statistical
analysis of those phenotypes.

- To address that request we started working on pcvr
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pCVr

 The main goal of pcvr is to lower the barrier to
entry for several kinds of longitudinal modeling
options and selected Bayesian statistics.

e Secondary goals are to support common
analysis based on what Is often done at the
Danforth Plant Science Center based on the
data-science core’s experience.
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Status of pcvr

* In September of 2024 v1.0.0 of pcvr was posted
to CRAN

* Development versions are available from the
danforth center’s github page:

— danforthcenter/pcvr
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Bayesian Probability

* Data Is observed and therefore known, the
parameters in our models are random
(probability distributions).

Bayesian and Frequentist Probability



Bayesian Probability

* Data Is observed and therefore known, the
parameters in our models are random
(probability distributions).

* Things that can happen in more ways are more
likely to happen, so we count the ways

- Given what happened what is the most plausible
explanation?

- P(model | data) ~ Posterior Probability
- High probability makes us trust the proposed model

Bayesian and Frequentist Probability 8 /146



Probabillity Distributions

* A probabillity distribution is a mathematical
function giving probabillities of different
outcomes for an experiment.

— It must sum to 1 (100%)

- There are very many probability distributions such
as the Normal, Student T, Chi-Square, Beta, etc.

- Some have special properties that make them very
appealing for statistics as a whole or Bayesian
statistics In particular.
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Frequentist Probabillity

* Frequentist probability uses the frequency of
events In very large samples/complete
populations.
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Frequentist Probabillity

* Frequentist probability uses the frequency of
events In very large samples/complete
populations.

e Parameters in models have set values, data
has a “sampling distribution” driven by
randomness.

- Given what happened what Is the most plausible
explanation?

- P(data | model) ~ P value
- Model is the Null Ho, so a low p-value rejects it.
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Frequentist  Bayesian

Fixed True Effect  Observed Data

Random Observed Data  True Effect

If True Effect is O then  Given the effect size

there is an a * 100% In our data there is a
. chance of estimating P probability of the :
|nterpretat|0n an effect of X or more.  True effect being at Where X is an
least X. effect size
magnitude
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Frequentist  Bayesian

Fixed True Effect  Observed Data

Random Observed Data  True Effect

P[ Data | No True 2| IREINEES |

' . Prior + Observed  Where X is an
Interpretatlon Population Effect ] Data ] effect size
magnitude
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Frequentist Bayesian

True Effect Observed Data

Fixe

Random Observed Data  True Effect
P[ hypothesis |
- P[ Data | No True : Where X i
Interpretation Population Effect ] Prior E{(i)tgs]erved ef-efg?:t Sléean
magnitude
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Conjugate

conjugate ®

kon'ja-gat”

intransitive verb

1. To inflect (a verb) in its forms for distinctions such as number, person, voice, mood, and

tense.

2. To join together.

3. To undergo conjugation.
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A Distribution Is a Fundamental Verb

“To Be”

AN
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Tense Is Data Added to the Verb

“I will be”
|
Future

Past Present
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More data makes it more specific

— “... will be” will have been”

— =

\MeH You H They H It\ ‘MeH You H They H It\

S— SUb]eCt S— SUbjeCt

; Future Perfect

IH/ “To Be” h

Past Present
fffffffffff Subject Subject
\MeHYouHTheyHlt\ \MeHYouHTheyHlt‘
“... were” “am” .. are” “Itis”

— “...wasg’”

Conjugate



There are probability distributions
that work the same way

Beta(a, B)

1

ma—l _ 7 B—1
Blap” 7Y
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For Conjugate distributions we can

add data to them very easily

Beta(2,2)
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Getting a little more formal

Beta(a , B ) + (a, B) ~ Beta(a’, B*)
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Getting a little more formal

iBeta(a B )+ (o, B) ~ Beta(a’, B‘):

Prior + Data ~ Posterior

 We know that the prior and posterior
‘Will be the same kind of distribution(verb)

/
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There are lots of conjugate
distributions.

Geometric
b Exponential
|
Negative P - Beta |t Binomial A
Binomial
a -
P Lognormal —— Gamma |«—= Poisson
Bernoulli t 1
T
p
a » Normal
'}
i
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pcvr..conjugate

* In pcvr the conjugate function can be used to
make these simple distribution comparisons for
a variety of data.
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pcvr..conjugate

* In pcvr the conjugate function can be used to
make these simple distribution comparisons for
a variety of data.

* Currently there are 8 supported distributions.
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pcvr:.conjugate distributions

lognormal
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pcvr:.conjugate UPDATED

gaussian T lognormal
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pcvr:.conjugate distributions

Distribution Data Flow Chart
T Gaussian Means T test
Gaussian Gaussian Z test*
Distributions
Right Skewed :
Lognormal ContinuoUS Wilcox
- Symmetric "
Von Mises Circular data Watson
Poisson Counts Wilcox
N_egatlye Counts Wilcox
Binomial
Beta Percentages Wilcox
(Beta_) Success/Failure Wilcox
Binomial counts
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pcvr:.conjugate ROPE

* ROPE (Region of Practical Equivalence) testing
IS also Iimplemented In pcvr::.conjugate, where
rope_range and rope_ci can be specified.
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ROPE tests help decision-making

* We often talk about how statistical significance
IS not biological significance.

* ROPE helps bridge that gap.
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An Example of conjugate+ROPE

e Say we want to know If two percentages are
different, but Iif the difference Is less than 7%
then It Is not very interesting biologically.
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An Example of conjugate+ROPE

Distribution of Samples Distribution of Difference
Sample 1: 0.79[0.76, 0.81] Median Difference of 0.06
Sample 2: 0.72[0.69, 0.76] 89% CI[0.02, 0.11]
P[p1=p2] = 0.08408 0.89% HDI in [-0.07, 0.07]: 0.62
|
0.002
>
@
-
)
()]
0.001
0.000 = |
0.00 0.25 0.50 0.75 1.00 0.0 0.1 0.2

Posterior Distribution of Random Variable Posterior of Difference
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An Example of conjugate+ROPE

Distribution of Samples Distribution of Difference
Sample 1: 0.79[0.76, 0.81] Median Difference of 0.06
Sample 2: 0.72[0.69, 0.76] 89% CI[0.02, 0.11]

P[p1=p2] = 0.08408 0.89% HDI in [-0.07, 0.07]: 0.62

™\ I

Interpretation:
There is about an 8.5% chance that the
Rate is the same between these groups.

Density/‘“

0.001

0.000 |

0.00 0.25 0.50 0.75 1.00 0.0 0.1 0.2
Posterior Distribution of Random Variable Posterior of Difference
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An Example of conjugate+ROPE

Distribution of Samples Distribution of Difference
Sample 1: 0.79[0.76, 0.81] Median Difference of 0.06
Sample 2: 0.72 [0.69, 0.76] 89% CI[0.02, 0.11]
P[p1=p2] = 0.08408 0.89% HDI in [-0.07, 0.07]: 0.62
[
oo Interpretation:
| But there is a 62% chance that
> The difference is < 7%.
m |
0.001
0.000 o |
0.00 0.25 0.50 0.75 1.00 0.0 0.1 0.2

Posterior Distribution of Random Variable Posterior of Difference
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* Non-linear modeling
* Example scenarios
* Resources
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Non-Linear Modeling

* pcvr has several functions that try to simplify
common non-linear modeling needs.
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Non-Linear Modeling

* pcvr has several functions that try to simplify
common non-linear modeling needs.

* One of the main settings where non-linear
modeling comes up in plant science is for
longitudinal modeling.

— Other options include dose-response curves and
time-to-event analysis.
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Longitudinal Modeling

Autocorrelation

200

150

100

50

0 5 10 15 20 o5
time
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Longitudinal Modeling

Non-Linearity

200
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100
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0 5 10 15 20 25

Im Residuals
o

time
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Longitudinal Modeling

Heteroskedasticity

200

150

100

50

0 5 10 15 20 25
time
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Non-linear Modeling can be complex

* In linear models we can easily work directly
from the data.

We label the midpoint of X and Y

We know our mean trend line will pass through here.

1.25

> 1.00

0.75

15 20 25 30
X
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Non-linear Modeling can be complex

* In linear models we can easily work directly
from the data.

We subtract the mean of X and Y out of the data We calculate the slope using these coordinates

|
|
|
|
|
|
|
| CIX=X-Y-Y)
| Z(X = X)
'

|>I- 000 f———————————— P R e o _? ______________ . | ] [ >|- 0.00 011 003 001 ° 11.45

° X m =
> . > 008 . 744.87
° | 0.4
m =0.015
-0.

X=X X —X
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Non-linear Modeling can be complex

* In linear models we can easily work directly
from the data.

And now we have a best fit line

1.25

y=m*x+b

—y———— - - - ——— —

1.05-002*22.8 + b
> 100 | (22.8,1.05) b = 0.698
|
|
|
|
|
0.75 :
|
|
i
15 20 25 30

X
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Non-linear Modeling can be complex

* In Non-linear models we need
- A more explicit formula
- starting values
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Non-linear formulas

>y <- rnorm(10)
> X <- rnorm(10)

* We have to > n(y~x)
explicity name
the parameters  in(formuta = y ~ x)

we Want to Coefficients:
" (Intercept) X
EEEStIfT]EitEE. 0.32236 0.03631

° ThlS a.”OWS for > nls(y ~I + A * x, start = list("I" =0, "A" = 0))
great flexibility,  Nontinear regression model

model: vy ~ I + A * X

t)[]t it if; more data: parent.frame()
. I A
Ir]\/()l\/EB(j' 0.32236 0.03631

residual sum-of-squares: 2.489

Number of iterations to convergence: 1
Achieved convergence tolerance: 1.412e-08
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Starting Values

. _ .
A non |Inear >nls(y ~ (A / (1 + exp( (B-x) / C) )) , data = simdf,

+ start = list(A =1, B =1, C = 1), trace = TRUE)
model Needs wws:.” c.oea0: por - G 11
. 2358449, (4.62e+00): par = (156.5259 149.0843 662.4917)
Startlng Error in nls(y ~ (A/(1 + exp((B - x)/C))), data = simdf, start = 1list(A = 1,

singular gradient

Values tO > ss <- growthSS("logistic", y ~ x, df = simdf, type = "nls")

] . > fitGrowth(ss, trace = TRUE)
Optlmlze 49868.30 (4.00e-10): par = (203.4609 9.635022 2.306136)

Nonlinear regression model

model: vy ~ A/(1 + exp((B - x)/C))
from' data: ss[["df"]]

A B C
2.306

203.461 9.635
° These Can be residual sum-of-squares: 49868
trICky, SO Number of iterations to convergence: 0

Achieved convergence tolerance: 4.003e-10

“self-starting” - russseers

mOdEIS are [1,] 203.4609 9.635022 2.306136
preferred.
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pcvr:.growthSS

* The growthSS function specifies self-starting
non-linear models using common growth
models across several model backends.
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pcvr::growthSS Main Options
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pcvr:.growthSS Additional Terms

* There are several keywords that can be used in
the growthSS model argument to:

- add intercept terms

- switch to modeling decay

- Model time-to-event data

- Change Distributions

- Specify changepoint models
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pcvr::fitGrowth

* growthSS specifies a list that can be used by
other downstream functions, but it does not
actually fit the model, that is done by fitGrowth.
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pcvr::fitGrowth

* growthSS specifies a list that can be used by
other downstream functions, but it does not
actually fit the model, that is done by fitGrowth.

* In general only the output of growthSS needs to
be passed to fitGrowth, but you can pass other
arguments on to the model backend as well.
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pcvr::testGrowth

 fitGrowth will return a model using the specified
backend. Any of those models can have a
variety of hypotheses tested using testGrowth.

- The detalls of what kinds of linear and non-linear
hypotheses can be tested is shown In the
testGrowth documentation.

Non-Linear Modeling 53/ 146



pcvr:.growthPlot

 The models made from fitGrowth can also be
visualized using growthPlot.

— See previous figure of main growthSS options.

- The detalls of the plot depend on the model
backend that was used.
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Example Longitudinal Model

ss <- growthSS("logistic", y ~ x, df = simdf, type = "brms",
sigma = "logistic",
start = list("A" = 130, "B" = 10, "C" = 3,
"sigmaA" = 10, "sigmaB" = 10, "sigmaC" = 2))
fit <- fitGrowth(ss, iter = 1000, chains = 4, cores = 4)
growthPlot(fit, form = ssSpcvrForm)

250

200
Credible

Interval

0.75
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0.25
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>

100

50

0

0 5 10 15 20 25
X
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Example Longitudinal Model

SS <- growthS#@"logistic” —s1 = y
sigma = = logistic",
start = list("A" = 130, "B" = 10, "C" = 3,
"sigmaA" = 10, "sigmaB" = 10, "sigmaC" = 2))
fit <- fitGrowth(ss, iter = 1000, chains = 4, cores = 4)
growthPlot(fit, form = ssSpcvrForm)

250 /

200

Credible
Interval

150

>

100 0.50

é Y

50

We specify a Logistic
Growth model.

0

J

0 5 10 15 20
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Example Longitudinal Model

ss <- growthSS("logistic"}) vy ~ x, —s1 = y
sigma = "logistic.,
start = list("A" = 130, "B" = 10, "C" = 3,
"sigmaA" = 10, "sigmaB" = 10, "sigmaC" = 2))
fit <- fitGrowth(ss, iter = 1000, chains = 4, cores = 4)
growthPlot(fit, form = ssSpcvrForm)

250

200
Credible

Interval

0.75
0.50

We don’t specify any
Grouping in the formula
For this example.
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Example Longitudinal Model

ss <- growthSS("logistic", y ~ x, df = simdf,[type = ”brms”,}
sigma = "logistic",
start = list("A" = 130, "B" = 10, "C" = 3,
"sigmaA" = 10, "sigmaB" = 10, "sigmaC" = 2))
fit <- fitGrowth(ss, iter = 1000, chains = 4, cores = 4)
growthPlot(fit, form = ssSpcvrForm)

250

200
Credible
Interval

0.75

Q50|

We use the “brms”
Backend, which fits a
Bayesian model.
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Example Longitudinal Model

ss <- growthSS("logistic", v ~ x, df = simdf, type = "brms",
sigma = ”logistic”J

start = List("A" = 130, "B" = 10, "C" = 3,
"sigmaA" = 10, "sigmaB" = 10, "sigmaC" = 2))
fit <- fitGrowth(ss, iter = 1000, chains = 4, cores = 4)
growthPlot(fit, form = ssSpcvrForm)

250

200

Credible
Interval

0.75
0.50

(This backend allows for )
distributional modeling,
so we model variance as
0 5 10 15 20 . .
X . Logisticas well.
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Example Longitudinal Model

ss <- growthSS("logistic", y ~ x, df = simdf, type = "brms",

sigma = "logistic",
[start = list("A" = 130, "B" = 10, 'C" = 3, J_
"sigmaA" = 10, "sigmaB" = 10, "sigmaC" = 2)))

fit <- fitGrowth(ss, iter = 1000, chains = 4, cores = 4)
growthPlot(fit, form = ssSpcvrForm)

250

200

Credible
Interval

0.75
0.50

Because this is a
Bayesian model we also
specify priors, here we
0 5 10 15 20
X _use default lognormals.
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Example Longitudinal Model

ss <- growthSS("logistic", y ~ x, df = simdf, type = "brms",
sigma = "logistic",
start = list("A" = 130, "B" = 10, "C" = 3,
"sigmaA" = 10, "sigmaB" = 10, "sigmaC" = 2))
fit <- fitGrowth(ss, iter = 1000, chains = 4, cores = 4)‘
growthPlot(fit, form = ssSpcvrForm) )

250

200
Credible

Interval

0.75
0.50

0.25

150

100

50

4 )

Once we use growthSS
0 = 10 15 » | the rest can just run.

X \ J
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* Example scenarios
* Resources
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Example Scenarios

* The rest of today will be similar to the Stats in R
workshop, but we’ll use pcvr functions and
highlight any differences between those and the
standard endpoints.
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Scenario 1

100%

* You are curious if the
germination between
20% Heat treated and
Control seeds is
different after 1 week.
You collect 5 reps from
each group and are all
set to compare them.
What test do you use”?

80%

70%

Percentage Germinated After 1 Week

60% °

a b
Treatment Group
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Scenario 1 — Wilcox Rank Sum Test

100%

* Wilcox Rank Sum is a

fine choice, but it does
90% require us to break ties
In the ranking and it has
low power with only 5
reps per group.

80%

70%

Percentage Germinated After 1 Week

60% .

a b
Treatment Group
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Scenario 1 — Wilcox Rank Sum Test

> wilcox.test(values ~ group, df) ° We get a P_Value’ but
Wilcoxon rank sum test with continuity correction we (j()r],t f]Ei\/EB an

data: values by group eStImate Of What the

W = 20.5, p-value = 0.106 dlfference IS.

alternative hypothesis: true location shift is not equal to 0
Warning message:

In wilcox.test.default(x = DATA[[1L]], y = DATA[[2L]], ...) :
cannot compute exact p-value with ties
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Scenario 1 — pcvr:.conjugate

100%

e Germination is a
percentage.

90%

* Depending on the data
format we might use the
binomial (for
counts/total) or the beta
(for pure percentages).

80%

70%

Percentage Germinated After 1 Week

60% .

a b
Treatment Group
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Scenario 1 — pcvr:.conjugate

res <- pcvr::conjugate(df|/dfsgroup =="a", "values"],
df[dfSgroup =="b", "values"],

method = "beta",

priors = list(a = 3, b = 1),

plot = TRUE,
hypothesis = "unequal")

[ N

We give the data as
two numeric samples.
. J
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Scenario 1 — pcvr:.conjugate

res <- pcvr::conjugate(df|[dfSgroup =="a", "values"],
df[dfSgroup =="b", "values"],
fhethod = "beta",
Lpriors = list(a = 3, b = 1),
plot = TRUE,

hypothesis = "unequal")

We specify the distribution
and a (weak) prior.

\. .
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Scenario 1 — pcvr:.conjugate

res <- pcvr::conjugate(df[dfsgroup =="a", "values"],
df[dfSgroup =="b", "values"],
method = "beta",

riors = list(a =3, b =1),
4' plot = TRUE, I

hypothesis = "unequal")

We return a plot
of the Posterior.
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Scenario 1 — pcvr:.conjugate

res <- pcvr::conjugate(df|[dfSgroup =="a", "values"],
df[dfSgroup =="b", "values"],
method = "beta",

priors = list(a = b =1
plot = TRUE:{ l

hypothesis = "unequal")

We don’t run ROPE
comparisons here.

Example Scenarios




Scenario 1 — pcvr:.conjugate

res <- pcvr::conjugate(df|dfSgroup =="a", "values"],
df[dfSgroup =="b", "values"],
method = "beta",

priors = list(a = 3, b = 1),

plot = TRUE,

{hypothesis = "unequal") ]

é )
We return the Probability
that the groups are unequal.

\. J
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Scenario 1 — Beta Distribution

Distribution of Samples

Sample 1: 0.93[0.83, 0.97]
Sample 2: 0.81[0.67, 0.89]
P[p1!=p2] = 0.70952

0.00100

0.00075

0.00050

Density

0.00025

0.00000

0.00 0.25 0.50 0.75 1.00
Posterior Distribution of Random Variable
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Scenario 1 — pcvr:.conjugate

res <- pcvr::conjugate(df|[dfsgroup =="a", "values"],
df[dfSgroup =="b", "values"],
method = "beta",
priors = list(a = 3, b = 1),

plot =[¥RHET{rope_range = c(-0.025, 0.025),]
hypoth¢sis = "unequal")

N

Now we also ask for the
Probability that the difference
. In groups is within [+/-2.5].
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Scenario 1 — pcvr:.conjugate

Distribution of Samples Distribution of Difference
Sample 1: 0.93[0.83, 0.97] Median Difference of 0.11
Sample 2: 0.81[0.67, 0.89] 89% CI [-0.01, 0.25]
P[p1!=p2] = 0.70952 0.89% HDI in [-0.025, 0.025]: 0.08
0.00100
0.00075
Py
€ 0.00050
O]
o
0.00025
0.00000 |
0.00 0.25 0.50 0.75 1.00 0.2 0.0 0.2 0.4

Posterior Distribution of Random Variable Posterior of Difference
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Scenario 1 — Takeaway Points

e conjugate provides another option when non-
parametrics may lack power or not return some
of the information you are interested in.

* The cost Is that you have to tell it some
distribution to use.

- There are examples and explanations for these
distributions in the documentation.

Example Scenarios 79/ 146



Scenario 1.5

100%

* You are curious if the
germination between
90% Heat treated and
Control seeds is
different after 1 week.
You collect 5 reps from
each group and are all
set to compare them.
What test do you use”?

80%

70%

Percentage Germinated After 1 Week

* This isn’t really how our
o5, . data generally works,
- - we get percentages
Treatment Group given a number of trials.
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Scenario 1.5

Of—————————————————.

* You are curious if the
germination between
Heat treated and
Control seeds is

gmup different after 1 week.
You collect 5 reps from
each group and are all
set to compare them.
What test do you use”?
* Our data actually looks
more like this

Experlment Number
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Scenario 1.5

Of—————————————————.

* You are curious if the
germination between
Heat treated and
Control seeds is

gmup different after 1 week.
You collect 5 reps from
each group and are all
set to compare them.
What test do you use”?
* Our data actually looks
more like this

Experlment Number
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Scenario 1.5 — pcvr::.conjugate

dfa <- df[dfSgroup =="a", |
dfb <- df[dfSgroup ——”b” ]
res <- pcvr::conjugate[sl = list(successes = dfaSsuccesses, trials = dfa$trials),]
s2= list(successes = dfbSsuccesses, trials = dfbStrials),
method = "bilnomial”,
priors = list(a = 3, b = 1),
plot = TRUE,
hypothesis = "unequal”™)

4 )
The beta-binomial method is

Unique in that it takes a list of
Data with success and trial

Counts.
\_ y,
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Scenario 1.5 — pcvr::.conjugate

dfa <- df[dfsgroup =="a", |
dfb <- df[dfSgroup =="b", |

res <- pcvr::conjugate(sl = list(successes = dfaSsuccesses, trials = dfasStrials),
s2= list(successes = dfbSsuccesses, trials = dfbStrials),

method = "binomial",
priors = list(a = 3, b = 1),
plot = IRUE,

hypothesis = "pnequal")

( )

The prior is still a Beta, like we
Looked at in the first example
Of conjugacy.

. J
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Scenario 1.5 — pcvr::.conjugate

Distribution of Samples

Sample 1: 0.93[0.9, 0.95]
Sample 2: 0.8 [0.76, 0.84]

P[p1!=p2] = 0.99716

0.0025 T o1
. s2
0.0020 1
+
_ 0.0015 1
[z 4 ™ 1
8 We used a LOT more of the information |
0.0010 . .
We originally collected and the I
Posterior probability reflects that. I
0.0005 | \_ y
0.0000
0.00 0.25 0.50 0.75 1.00

Posterior Distribution of Random Variable
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Scenario 1.5 — Takeaway Points

 The more of your data you can use the better
conclusions you can draw.

* |ncluding the “context” of the percentages from
example 1 in effect gave us 50x more
iInformation to fuel our decisionmaking.

* This is something to keep in mind throughout
experimental design, data collection, and
analysis.
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30

25

Height (cm) after 2 weeks

15

Scenario 2

* You are comparing plant
. heights between two
treatment groups (say,
control vs cold stress).
Given this data how do
you do that?

a b
Treatment Group

Example Scenarios
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One group to Comparing two groups Comparing two or more ( Association of two
specified value no covariates groups with covariates variables
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‘ \ Paired Un-paired effects effects ‘\RJ, ‘707‘ ‘ N
. Contingency
G NG Chi-square Non Temporal G NG -
test Temporal coefficients
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) Correlation
Linear
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Wilcoxon test
s
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One sample
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o Oy
—
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variance t-test
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@)
N

Paired t-test \ - Ordinal

] | | |
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rank sum test || Squared test Structure .

* |f the outcome and main predictor are both two-level factors, Breslow-Day and Cochren-Mantel-Hanzel tests are better
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One group to
specified value

[T1

(

Rl O] N| Paired
G NG Chi-square
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One sample

t-test
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Comparing two groups
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rank sum test || Squared test Structure

"R,I - Ratio, Interval

G - Gaussian

NG - Not Gaussian

0 -Ordinal

‘ - Nominal

O;
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* |f the outcome and main predictor are both two-level factors, Breslow-Day and Cochren-Mantel-Hanzel tests are better
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Scenario 2

* You are comparing plant
heights between two
treatment groups (say,
control vs cold stress).
Given this data how do
you do that?

> t.test(values ~ group, df)

30 o

25

Welch Two Sample t-test

data: values by group
t = -2.5713, df = 14.008, p-value = 0.02217
alternative hypothesis: true difference in m
95 percent confidence interval:
15 -8.8388370 -0.7996288
? sample estimates:

a b mean in group a mean in group b

Treatment Group 20.22388 25.04311

90/ 146

Height (cm) after 2 weeks
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Scenario 2 — pcvr:.conjugate

 There are “t” and
30 . “gaussian” distributions
we can use.

- “t” Is a comparison of
gaussian means.

e Think T test

- “gaussian” Is a
comparison of
gaussian distributions.

" * Think Z test

25

Height (cm) after 2 weeks

a b
Treatment Group
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Scenario 2 — pcvr:.conjugate

res <- pcvr::conjugate(

priors = list(mu=c(25,25),n=c(1,1),s2=c(20,20) ),
rope _range = c(-2, 2),
plot = TRUE, hypothesis = "unequal")

res2 <- pcvr::conjugatefs&7—327—nethgd—={"gaussian",]

priors = list(mu=c(25,25),n=c(1,1),s2=c(30,30) ),
rope _range = c(-2, 2),
plot = TRUE, hypothesis = "unequal")

These will yield different results
and the choice between them should
. be made based on your question.

J
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Scenario 2 — pcvr:.conjugate t

Distribution of Samples Distribution of Difference
Sample 1: 20.66 [19.03, 22.28] Median Difference of -4.4
Sample 2: 25.04 [22.44, 27.64] 89% Cl [-7.49, -1.38]
P[p1!=p2] = 0.90362 0.89% HDI in [-2, 2]: 0.05
1 | |
[
6e-04 ]
[
2>
@D 4e-04
o
-
2e-04
0e+00 |
15 20 25 30 15 -10 5 0 5

Posterior Distribution of Random Variable Posterior of Difference

Example Scenarios 93/ 146



Scenario 2 — pcvr:.conjugate gaussian

Distribution of Samples Distribution of Difference
Sample 1: 20.66 [15.27, 26.05] Median Difference of -4.31
Sample 2: 25.04 [16.4, 33.68] 89% CI [-14.79, 5.56]
P[p1!=p2] = 0.43495 0.89% HDI in [-2, 2]: 0.22
] ] I
|
6e-04 I
|
e
= 4e-04
c
o)
()]
2e-04
0e+00 |
0 20 40 -40 -20 0 20
Posterior Distribution of Random Variable Posterior of Difference
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Scenario 2

* Our P-value looked “stronger” than the posterior
probability. Why would we use the Bayesian
option?

- 1: This Is just an example, generally you shouldn't

be trying several tests of the same hypothesis and
picking based on the output.
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Scenario 2

* Our P-value looked “stronger” than the posterior
probability. Why would we use the Bayesian
option?

- 1: This Is just an example, generally you shouldn't
be trying several tests of the same hypothesis and
picking based on the output.

— 2. The Interpretation piece may matter to you.

- 3: You may have more informative prior information
that should be included.
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Scenario 2 - Interpretation

Bayesian
T Test
Test
If the population means There is a 90.4% chance
- are the same we would that the population means
Pro bab| | |ty see data with this are different.
difference or more ~2.2%
of the time.
. 1, O1, V1) -
Estimate U1 — Mo (b3, 01,
T(HZ; 021 VZ)
95% Conf. Interval will We are 95% sure that the
include the true effect size 95% Cred. Interval
|nte rva| 95 out of 100 times. contains the true effect
size.
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Scenario 2 — Prior Information

* Priors are an often criticized part of Bayesian
statistics.
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Scenario 2 — Prior Information

* Priors are an often criticized part of Bayesian
statistics.

* Priors parameterize information that is not in
your data but which Is relevant to your decision-
making/analysis.

- Include: Previous research, Biological boundaries,
etc.

- Exclude: Suspicions, Goals, Hunches, etc.
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Scenario 2 — Prior Information

* Priors are an often criticized part of Bayesian
statistics.

* Priors parameterize information that is not in
your data but which Is relevant to your decision-
making/analysis.

- Include: Previous research, Biological boundaries,
etc.

- Exclude: Suspicions, Goals, Hunches, etc.

* Broadly, priors come as weak, strong, and flat.
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Scenario 2 — Prior Information

* Priors are an often criticized part of Bayesian
statistics.

* Priors parameterize information that is not in
your data but which Is relevant to your decision-
making/analysis.

- Include: Previous research, Biological boundaries,
etc.

- Exclude: Suspicions, Goals, Hunches, etc.

* Broadly, priors come as strong, weak, and flat.
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Strong Priors

* Negative: This guy has OPINIONS and they are
not going to change based on your paltry
“evidence”

* Positive: This guy Is far from gullible, he will not
exaggerate and aggrandize bad information.
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Mild (weak) Priors

* Negative: This guy Is not a domain expert, he Is
not very sure about what to expect. If you don’t
have much (data) to contribute then your
conclusions will be limited.

e Positive: This guy knows he is not a domain
expert, he is able to contribute to a
conversation and collaborate without talking
over the evidence you present.
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Flat Priors

* Negative: This guy doesn’t understand the
world at all. He contributes nothing to the

conversation and was only invited to round out
the numbers.

* Positive: “Unbiased” in the eyes of many

people, but those people are confusing
“unbiased” with “ignorant”.
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Scenario 2 — Takeaway Points

* Bayesian testing provides an alternative to
frequentist parametric testing as well, with
benefits in interpretation.

* The ability to include prior information should be
viewed as an opportunity to be more accurate
rather than a concession that your results must
be unfairly biased.

Example Scenarios 105/ 146



Scenario 3

10

* You are Interested In
the difference In
number of leaves
between two
genotypes. How do
you analyze the data?

Leaf Count

3 o

2 »

1 °

a b
Treatment Group
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* |f the outcome and main predictor are both two-level factors, Breslow-Day and Cochren-Mantel-Hanzel tests are better
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* If the outcome and main predictor are both two-leVv
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Scenario 3

10

* Wilcox is a good
option here, but again
we have ties and
again we will not get
an estimate of the
effect size.

Leaf Count

3 o

2 »

1 °

a b
Treatment Group
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Scenario 3

Distribution of Samples

Sample 1: 5.19[4.2, 6.47]
Sample 2: 8.05[6.79, 9.6]
P[p1!=p2] = 0.92812

5e-04
4e-04

3e-04

Density

2e-04

1e-04

0e+00
" ] i

5.0 7.5 10.0
Posterior Distribution of Random Variable
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Scenario 3

* Why the continuous curves? That was count
data?
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Scenario 3

* Why the continuous curves? That was count
data?

- In the previous examples we estimated the mean of
a Gaussian or the Gaussian itself, so the parameter
space and posterior distribution’s support were the

same.

- Here we are estimating A from Poisson(), which is
conjugate to the Gamma distribution (continuous

positive).
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Scenario 3 - Takeaway

* We are working with several distributions so
conjugate Is a little less plug-and-play than T
tests and Wilcoxon tests.

* Some conjugate priors are in the same space
as the observed data, some like this one have
one degree of abstraction.

Example Scenarios 113/ 146



Scenario 4

* You image plants in a
growth chamber for a
month and want to
compare the growth

gove rate between two soll

_, treatments. How do
you analyze your
data?

60

20

0
0 10 20 30

Time
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* |f the outcome and main predictor are both two-level factors, Breslow-Day and Cochren-Mantel-Hanzel tests are better
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* |f the outcome and main predictor are both two-level factors, Breslow-Day and Cochren-Mantel-Hanzel tests are better
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Scenario 4

* We're going to have to
make a model, we’ll
try two options before
showing how this

goveworks In pcvr.

60

20

0
0 10 20 30

Time
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Scenario 4 - nls

>ml <- nlsfy ~ A-A * exp(-B * time),}1
~ data = simdf, start = list(’
> ml
Nonlinear regression model

model: vy ~ A - A * exp(-B * time)

A" = 20, "B" = 0.1 ))

data: simdf " We specify a monomolecular
A B Growth formula, potentially
54.6522 0.1016 A point where we’d get hung up. |

residual sum-of-squares: 29658

Number of iterations to convergence: 3
Achieved convergence tolerance: 6.1e-07
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Scenario 4 - nls

> ml <- nls(y ~ A-A * exp(-B * time),
~ data = simdf, start =[list("A” = 20, "B" = 0.1 ﬂ)
> ml ‘
Nonlinear regression model

model: vy ~ A - A * exp(-B * time) ‘

data: simdf " We specify starting values. |
A B here without modeling groups
54.6522 0.1016 _this is not terribly difficult.

residual sum-of-squares: 29658

Number of iterations to convergence: 3
Achieved convergence tolerance: 6.1e-07
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Scenario 4 - nls

> nlsqy ~ A[group]-A[group] * exp(-B[group] * time)L
+ data = simdf, start = [i1st( A" = 55, = 0.1))

Error in numericDeriv(form[[}3L]], names(ind), env, central = nDcentral) :
Missing value or an infinity produced when evaluating the model

4 . )
Modeling our groups makes
this much more difficult to
Initialize.
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Scenario 4 - Im

>[lm(y ~ log(time)*group, simdf)]

Call:
Im(formula = y ~ |[log(time) * group, data = simdf)
Coefficients:
(Intercept) log(time) groupb log(time):groupb
-3.642 17.343 5.754 -3.211

"Here we use a linear logarithmic
Growth model. This is easy, why
not use this option?

\. y
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Scenario 4 - Im

(" Our data looks )
Asymptotic, but the
Logarithmic model

IS not, it just slows
0 . down some.

0 10 20 30 0 10

20 30
Time
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Scenario 4 - pcvr

> ss <- growthSS("monomolecular",

= y ~ time|id/group,

= df = simdf, type = "nls")
Individual is not used with type = 'nls’.
> fit <- fitGrowth(ss)

> fit

Nonlinear regression model
model: v ~ A[group] - A[group] * exp(-B[group] * time)
data: ss[["df"]]
Al A2 B1 B2
60.51876 49.77994 0.08475 0.12225
residual sum-of-squares: 24777

Number of iterations to convergence: 6
Achieved convergence tolerance: 5.759e-09
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Scenario 4 - pcvr

growthPlot(fit, form

ssSpcvrForm, df = ssS$df)

0 10 20 30 0 10 20 30
time
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Scenario 4 - pcvr

> coef(fit)

Al A2 Bl B2
61.56988178 51.98329496 0.08773047 0.12275720
> testGrowth(ss, fit, test = "Al1l - A2*1.1")

Form Estimate SE t-value p-value
1 Al - A2*1.1 4.388257 0.7512528 5.841252 6.61723e-09

group
- a

— b

0 10 20 30 0 10 20 30
time

Example Scenarios 125/ 146



Scenario 4 - Takeaway

* Even simple non-linear models are easier to
use If they are among those included In
growthSS.

* There Is support for visualization and testing of
those models through growthPlot and
testGrowth.
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Scenario 5

150

* You have collected
a month of growth
data across 20
. plants in each of 2
groups. You want to
model the growth
rate and final size.
How do you start?

100

50

time
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Scenario 5

150

* Let’s start with the
simplest model that
makes sense,
. maybe a logistic
growth model.

100

50

time
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Scenario 5

ss <- growthSS("logistic", form

y ~ time|id/group,

df = simdf, type = "nls")
fit <- fitGrowth(ss)
growthPlot(fit, df = ssSdf, form = ss$SpcvrForm)

150

100

50

0 10 20 30 0 10 20 30
time
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Scenario 5

We have a clear
> plot(fit) Pattern in the residuals
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2]
— O |
s X
ke Q 2
:
D & 8 B
S 8 o é
S So Q u
©
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w
-4 — -
I I I I
0 50 100 150

Fitted values
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Scenario 5

We also have strong
autocorrelation that is not
taken into account yet.

> plot(fit)

\. J

N

o

R

Standardized residuals

~

Fitted values
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Scenario 5

* Okay so we have some shortcomings, we are
going to want a better model.
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Scenario 5

* Okay so we have some shortcomings, we are
going to want a better model.

SSs <- growthSS["gompertz”,lfgrm
df = simdf,| type
start = |List("A"

y ~ ti elid/group,[sigma = ”logistic”L
"brms"
125, "B" = 10, "C" = 0.2,

"sigmaA" = 20, "sigmaB" = 15, "sigmaC" = 3

fit <- fitGrowth(ss, cores = 4, chains =4, iter = 1000)
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Scenario 5

growthPlot(fit, form = ssS$SpcvrForm)

150 Credible
Interval
0.75
. 100
0.50
50 0.25
0
0 10 20 30 0 10 20 30

time
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Scenario 5

growthPlot(fit, df = sssdf, form

ssSpcvrForm)

150 Credible
Interval
100 0.75
>

0.50

50 0.25

0
0 10 20 30 O 10 20 30
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Scenario 5

growthPlot(fit, df = sssdf, form

ssSpcvrForm)

Credible
Interval

150

100 0.75

0.50

We are not capturing the
decline in our model.
Are we interested in it?
If not, we can be done.

0 10 \If SO, we need a hew model.) 20 30
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Scenario 5

growthPlot(fit, df = sssdf, form = ssSpcvrForm)

Credible
Interval

150

100 0.75

> Note that there is not a right

Answer to this question.

50 This could be an image analysis

Artifact, in which case we don’t

. qwant to model it here, we want to
0

0.50

0.25

Fix It there.

time

20 30
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Scenario 5

growthPlot(fit, df = sssdf, form = ssSpcvrForm)

Credible
Interval

150

100 0.75

This could also be a biotic stress §
(bugs eating the plants?) that
Is not part of our design and we
Can remove these as outliers/

0 4 Ignore them in the model.
0

time

0.50

50 0.25

20 30
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Scenario 5

growthPlot(fit, df = sssdf, form = ssSpcvrForm)

Credible
Interval

150

100 0.75

0.50

It could also be the plants wilting
From some part of our experiment
That takes several weeks to appear.
° q We might want to compare that.

0

50 0.25

) 30
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Scenario 5

e We'll assume we want to model this trend.

ss <- growthSS("gompertz + linear decay", form = y ~ time|id/group,
sigma = "logistic", df = simdf,
start = list("gompertziA" = 125,
"gompertziB" = 10, "gompertziC" = 0.2,
"changePointl" = 25, "linear2A" = 5,
"sigmaA" = 20, "sigmaB" = 15, "sigmaC" = 3),
type = "brms")
fit <- fitGrowth(ss, cores = 4, chains =4, iter = 1000)

Example Scenarios 140 / 146



Scenario 5

e We'll assume we want to model this trend.

SS <- grow%h%&éigeﬂﬁeﬁie{+ linear decay”J form = y ~ time|id/group,

sigma = "logistic", df = simdf,
start = list("gompertziA" = 125,
"gompertziB" = 10, "gompertziC" = 0.2,
[TghangePointi” = 25, "linear2A" = 5,
"sigmaA" = 20, ”51gmaB” = 15, "sigmaC" = 3),

_n "y
7

fit <- fifGrowth(ss, cores = 4, chains =4, iter = 1000)
( )
Now we have a changepoint model.
We are estimating a changepoint and

6 trend of linear decay after that time.
J
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Scenario 5

Credible

150
Interval

0.75
- 100
0.50
50 0.25
0
0 10 20 30 0 10 20 30
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Scenario 5

> hypl <- brms::hypothesis(fit,"linear2A groupa > linear2A_groupb")
> hyp2 <- testGrowth(fit = fit, test = "linear2A_groupa > linear2A_groupb")
> identical(hypl, hyp2)
[1] TRUE
> hyp1l
Hypothesis Tests for class b:
Hypothesis Estimate Est.Error CI.Lower CI.Upper Evid.Ratio Post.Prob Star
1 (linear2A_groupa)... > 0 -0.5 1.63 -3.25 2.19 0.63 0.38
'CI': 90%-CI for one-sided and 95%-CI for two-sided hypotheses.
'#*': For one-sided hypotheses, the posterior probability exceeds 95%;
for two-sided hypotheses, the value tested against lies outside the 95%-CI.
Posterior probabilities of point hypotheses assume equal prior probabilities.
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e Resources
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Resources and Conclusion

* This Is a limited introduction to the conjugate
comparisons that are possible and the modeling
supported by growthSS, for more examples see
documentation or vignettes/articles online:

- https://danforthcenter.github.io/pcvr/

* Note that many conjugate options were used In
place of the wilcoxon rank sum test, that is
because in the normal flow chart we don’t worry
about distributions other than the Gaussian, but

that Is a large focus In conjugate.
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Resources and Conclusion

* This Is a limited introduction to the conjugate
comparisons that are possible and the modeling
supported by growthSS, for more examples see
documentation or vignettes/articles online:

- https://danforthcenter.github.io/pcvr/

* Feel free to ask questions in slack or to raise
Issues In github.
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