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Outline

- Scientific Process
- Definitions
- Statistical Power and Significance
- Statistics and Power Analysis Workflow

- Formulaic vs Simulated

- Example Scenarios (5) 
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The Scientific Process

1) Theorize question or problem
2) Develop Hypotheses

4) Record observations
3) Design Experiment

5) Analyze observations
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The Scientific Process

- Not all designs are created equally

- Not all observations are created equally

- poor design leads to impossible inferences

- poor statistical methods leads to false-positives and false-negatives
- continuous > ordinal >= nominal

1) Theorize question or problem
2) Develop Hypotheses

4) Record observations
3) Design Experiment

5) Analyze observations
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The Scientific Process

- Not all designs are created equally

- Not all observations are created equally

- poor design leads to impossible inferences

- poor statistical methods leads to false-positives and false-negatives
- continuous > ordinal >= nominal

1) Theorize question or problem
2) Develop Hypotheses

4) Record observations
3) Design Experiment

5) Analyze observations

- Not all methods are created equally
- many methods can only test a handful of hypotheses and use p-values
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The Scientific Process

- Before starting you should consider

1) Theorize question or problem
2) Develop Hypotheses

4) Record observations
3) Design Experiment

5) Analyze observations

What outcomes are possible?
Are the questions you’re interested in answerable with the design? 
What format will your data be in?
What test will you use and what hypotheses are possible in it?
Do you have the replication required? 
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The Scientific Process

- Before starting you should consider

1) Theorize question or problem
2) Develop Hypotheses

4) Record observations
3) Design Experiment

5) Analyze observations

What outcomes are possible?
Are the questions you’re interested in answerable with the design? 
What format will your data be in?
What test will you use and what hypotheses are possible in it?
Do you have the replication required? 

Focus of the 
Stats In R and
Stats in pcvr
Workshops, but
will be part of
today as well

The Stats in RCR
Workshop gets into
These steps some

And talks about how
To know when you’re
Off of the flow chart.

The Troubleshooting In R
workshop gets into some

coding problems in this step.
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The Scientific Process

- Before starting you should consider

1) Theorize question or problem
2) Develop Hypotheses

4) Record observations
3) Design Experiment

5) Analyze observations

What outcomes are possible?
Are the questions you’re interested in answerable with the design? 
What format will your data be in?
What test will you use and what hypotheses are possible in it?
Do you have the replication required? Power analysis is

useful in method
development but

here we’ll focus on
experimental design
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Outline

- Scientific Process
- Definitions
- Statistical Power and Significance

- Formulaic vs Simulated

- Statistics and Power Analysis Workflow
- Example Scenarios 
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Start

One group to 
specified value

Comparing two groups 
no covariates

Comparing two or more 
groups with covariates

R,I O N

G NG

Wilcoxon test

Wilcoxon signed 
rank test

One sample 
t-test

Chi-square 
test

Paired Un-paired

Paired t-test

McNemar Chi-
square test

R,I O N
R,I O N

G NG

G NG

Unequal 
variance t-test

Wilcoxon 
rank sum test

Fisher or Chi-
Squared test

No block 
effects

With block 
effects

Pairwise

Model 
Building

Fixed 
Effects

Contrasts

Random 
effects

Correlation 
Structure

* If the outcome and main predictor are both two-level factors, Breslow-Day and Cochren-Mantel-Hanzel tests are better

TemporalNon 
Temporal

R,I O N

Identity link

G NG

Transform link

Logit link

Probit link

Contrasts

Longitudinal
Model Building

Association of two 
variables

Spearman 
Correlation

G NG

R,I O N

Linear 
Regression

Contingency 
coefficients

Response 
Variable

R,I

O

N

- Ratio, Interval

- Ordinal

- Nominal

G  - Gaussian

NG - Not Gaussian
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R,I

O

N

- Ratio, Interval
* Continuous scale measurements
* Ex: 1.3, 3.45, 2.98, …

* Plant height, CFUs, q-PCR, Watersoaking area, etc 

- Ordinal
* Ordered discrete scale measurements
* Ex: 19, 13, 18, …

* Severity scores, hull vertices, number of leaves, etc

- Nominal
* Non-ordered discrete scale measurements
* Ex: Red, Yellow, Cyan, …

* Diseased vs not-diseased, dead vs alive, punnett squares, etc  
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R,I - Ratio, Interval
- Continuous scale measurements
- Ex: 1.3, 3.45, 2.98, …

- Plant height, CFUs, q-PCR, Watersoaking area, etc 
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R,I - Ratio, Interval
- Continuous scale measurements
- Ex: 1.3, 3.45, 2.98, …

- Plant height, CFUs, q-PCR, Watersoaking area, etc 

G

NG - Not Gaussian distributed
- Usually means non-parametric test

- If it follows a different distribution,
 likelihood ratio test or other methods using
 that distribution

- Gaussian distributed
- Parametric testing
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R,I - Ratio, Interval
- Continuous scale measurements
- Ex: 1.3, 3.45, 2.98, …

- Plant height, CFUs, q-PCR, Watersoaking area, etc 

G

NG - Not Gaussian distributed
- Usually means non-paramentric test

- If it follows a different distribution,
 likelihood ratio test or other methods using
 that distribution

- Gaussian distributed
- Parametric testing

- Is data gaussian?

1) Visualize data
2) shapiro.test()
3) ks.test()
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R,I - Ratio, Interval
- Continuous scale measurements
- Ex: 1.3, 3.45, 2.98, …

- Plant height, CFUs, q-PCR, Watersoaking area, etc 

G

NG - Not Gaussian distributed
- Usually means non-paramentric test

- If it follows a different distribution,
 likelihood ratio test or other methods using
 that distribution

- Gaussian distributed
- Parametric testing

- Is data gaussian?

1) Visualize data
- QQ plots

2) shapiro.test()
3) ks.test()

Broadly, 
visualizations are 
more useful than 
tests of normality.
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R,I - Ratio, Interval
- Continuous scale measurements
- Ex: 1.3, 3.45, 2.98, …

- Plant height, CFUs, q-PCR, Watersoaking area, etc 

G

NG - Not Gaussian distributed
- Usually means non-paramentric test

- If it follows a different distribution,
 likelihood ratio test or other methods using
 that distribution

- Gaussian distributed
- Parametric testing

- Is data gaussian?

1) Visualize data
- QQ plots

2) shapiro.test()
3) ks.test()

Broadly, 
visualizations are 
more useful than 
tests of normality.
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R,I

O

N

- Ratio, Interval
- Continuous scale measurements
- Ex: 1.3, 3.45, 2.98, …

- Plant height, CFUs, q-PCR, Watersoaking area, etc 

- Ordinal
- Ordered discrete scale measurements
- Ex: 19, 13, 18, …

- Severity scores, hull vertices, number of leaves, etc

- Nominal
- Non-ordered discrete scale measurements
- Ex: Red, Yellow, Cyan, …

- Diseased vs not-diseased, dead vs alive, punnett squares, etc  

G

NG - Not Gaussian distributed
- Usually means non-paramentric test

- If it follows a different distribution,
 likelihood ratio test or other methods using
 that distribution

- Gaussian distributed
- Parametric testing
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Start

One group to 
specified value

Comparing two groups 
no covariates

Comparing two or more 
groups with covariates

R,I O N

G NG

Wilcoxon test

Wilcoxon signed 
rank test

One sample 
t-test

Chi-square 
test

Paired Un-paired

Paired t-test

McNemar Chi-
square test

R,I O N
R,I O N

G NG

G NG

Unequal 
variance t-test

Wilcoxon 
rank sum test

Fisher or Chi-
Squared test

No block 
effects

With block 
effects

Pairwise

Model 
Building

Fixed 
Effects

Contrasts

Random 
effects

Correlation 
Structure

* If the outcome and main predictor are both two-level factors, Breslow-Day and Cochren-Mantel-Hanzel tests are better

TemporalNon 
Temporal

R,I O N

Identity link

G NG

Transform link

Logit link

Probit link

Contrasts

Longitudinal
Model Building

Association of two 
variables

Spearman 
Correlation

G NG

R,I O N

Linear 
Regression

Contingency 
coefficients

Response 
Variable

R,I

O

N

- Ratio, Interval

- Ordinal

- Nominal

G  - Gaussian

NG - Not Gaussian

Next we’ll define
The gray terms and 

some power 
analysis terms
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Type 1 
Error
Type 2 
Error

- A false positive
- Detecting an effect when none truly exists.

- A false negative
- Failing to detect an effect that does truly exist.
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Type 1 
Error
Type 2 
Error

Alpha

Power

- A false positive
- Detecting an effect when none truly exists.

- A false negative
- Failing to detect an effect that does truly exist.

- Probability of a false Positive
- This is generally set to 0.05 just based on convention

- Probability of a false negative
- Generally we aim for >80% power
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Type 1 
Error
Type 2 
Error

Alpha

Power

- A false positive
- Detecting an effect when none truly exists.

- A false negative
- Failing to detect an effect that does truly exist.

- Probability of a false Positive
- This is generally set to 0.05 just based on convention

- Probability of a false negative
- Generally we aim for >80% power

- Conditional probability of the data given no effect
- Having a P-value below alpha, used for saying that the
Null hypothesis is unlikely.

Statistical
Significance

Effect Size - The magnitude of an effect
- Stronger effects are easier to detect.
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Type 1 
Error
Type 2 
Error

Alpha

Null 
Hypothesis

Power

Effect Size

Alternative 
Hypothesis

- A false positive
- Detecting an effect when none truly exists.

- A false negative
- Failing to detect an effect that does truly exist.

- Probability of a false Positive
- This is generally set to 0.05 just based on convention

- Probability of a false negative
- Generally we aim for >80% power

- The magnitude of an effect
- Stronger effects are easier to detect.

- The hypothesis you aim to reject with your experiment
- This is almost always that there is no effect.

- The hypothesis you propose in place of the Null
- This is the hypothesis you would state in your introduction

Statistical
Significance

- Conditional probability of the data given no effect
- Having a P-value below alpha, used for saying that the
Null hypothesis is unlikely.
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Outline

- Scientific Process
- Definitions
- Statistical Power and Significance

- Formulaic vs Simulated

- Statistics and Power Analysis Workflow
- Example Scenarios 

That was a lot of definitions. If you
have questions let’s go over them,

then let’s take a break.
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Statistical Significance

● What goes into a statistically significant result?
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Statistical Significance
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Statistical Significance
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Statistical Significance
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Statistical Significance
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Statistical Significance

● P-values are a product of the data and 
assumptions.

● Posterior Probabilities are a product of data, 
priors, and assumptions.

● Next we’ll look at how power is a function of 
effect size, alpha, and replication.
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Visualizing Power
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Visualizing Power
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Non-Centrality in Power Analysis
● Frequentist tests generally have a distribution for the Null 

hypothesis, but we’re interested in the probability under 
the alternative hypothesis.

● To evaluate that we’ll use the Non-Central T Distribution.
– Non-centrality here changes the distribution from being 

when the Null is true to when the Null is false (ie, when 
there is an effect).
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Visualizing Power
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Visualizing Power
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Visualizing Power
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Visualizing Power

Power = Sum of Non-Central T
That is past these values

Type 2 Error = Non-Central T
That is inside these values.

This is the complement.
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Visualizing Power

Note, so far this is algebra.
Totally deterministic.
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Formulaic Power Analysis

● Given assumptions this is just an equation.
● Formulaic approaches use the steps we just 

went over to calculate some missing value out 
of:
– Effect size
– Power
– Alpha
– Number of Reps
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Formulaic Power Analysis

● Given assumptions this is just an equation.
● Formulaic approaches use the steps we just 

went over to calculate some missing value out 
of:
– Effect size
– Power
– Alpha
– Number of Reps Assumptions:

- T test assumptions
- Equal Variance (given 2 samples)
- Formula components are Fixed
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Formulaic Power Analysis

● Given assumptions this is just an equation.
● There are several more formulaic options 

beyond T tests.
● R packages pwr, 

PowerUpR, and 
WebPower expand on the 
options in stats::

● In general these will have 
more assumptions than 
their respective tests.
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Simulation Based Power Analysis

● To relax assumptions/test power in more 
complex settings we’ll often turn to simulation 
based power analysis.
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Simulation Based Power Analysis

● To relax assumptions/test power in more 
complex settings we’ll often turn to simulation 
based power analysis.

● Generally this will be more conservative than 
formulaic power analysis because simulated 
data is more variable. 
– Like models all simulations are wrong, but some are 

useful.
– The simulation is often more similar to how newly 

collected data will behave, but this all depends on 
how you simulate data.
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Simulation Based Power Analysis

Difference in these curves
Is a product of the variability

In our simulated data.

S1_i ~ N(mean(S1), sd(S1))
S2_i ~ N(mean(S2), sd(S2))
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Simulation Based Power Analysis

The mean difference and 
Effect size have the same

Center, but they have spread.
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Outline

- Scientific Process
- Definitions
- Statistical Power and Significance

- Formulaic vs Simulated

- Statistics and Power Analysis Workflow
- Example Scenarios 

Questions about Power
or Significance?
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Outline

- Scientific Process
- Definitions
- Statistical Power and Significance

- Formulaic vs Simulated

- Statistics and Power Analysis Workflow
- Example Scenarios 

That was some stats

Let’s take a break
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Start

One group to 
specified value

Comparing two groups 
no covariates

Comparing two or more 
groups with covariates

R,I O N

G NG

Wilcoxon test

Wilcoxon signed 
rank test

One sample 
t-test

Chi-square 
test

Paired Un-paired

Paired t-test

McNemar Chi-
square test

R,I O N
R,I O N

G NG

G NG

Unequal 
variance t-test

Wilcoxon 
rank sum test

Fisher or Chi-
Squared test

No block 
effects

With block 
effects

Pairwise

Model 
Building

Fixed 
Effects

Contrasts

Random 
effects

Correlation 
Structure

* If the outcome and main predictor are both two-level factors, Breslow-Day and Cochren-Mantel-Hanzel tests are better

TemporalNon 
Temporal

R,I O N

Identity link

G NG

Transform link

Logit link

Probit link

Contrasts

Longitudinal
Model Building

Association of two 
variables

Spearman 
Correlation

G NG

R,I O N

Linear 
Regression

Contingency 
coefficients

Response 
Variable

R,I

O

N

- Ratio, Interval

- Ordinal

- Nominal

G  - Gaussian

NG - Not Gaussian
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Scenarios

● Find the test you need given the data
● Find the relevant information for power analysis
● Decide on formulaic vs simulation based
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Outline

- Scientific Process
- Definitions
- Power and Significance

- Formulaic vs Simulated

- Statistics and Power Analysis Workflow
- Example Scenarios 
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Scenario 1
● You want to compare root length in WT vs a 

mutant. You have 3 preliminary reps from 
each genotype. What test will you use and 
how many replicates will you need?
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Scenario 1

We have unpaired 
continuous data. With 3 
reps it is hard to say but 
we’ll expect gaussian data 
so we’ll use Welch’s T Test.

Statistical Test

● You want to compare root length in WT vs a 
mutant. You have 3 preliminary reps from 
each genotype. What test will you use and 
how many replicates will you need?
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Scenario 1

To calculate reps we need:
● Effect size = 
● SD = 
● Power = 0.8
● Alpha = 0.05

Power Analysis

● You want to compare root length in WT vs a 
mutant. You have 3 preliminary reps from 
each genotype. What test will you use and 
how many replicates will you need?
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Scenario 1

To calculate reps we need:
● Effect size = 3
● SD = 2
● Power = 0.8
● Alpha = 0.05

Power Analysis

● You want to compare root length in WT vs a 
mutant. You have 3 preliminary reps from 
each genotype. What test will you use and 
how many replicates will you need?
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Scenario 1

Power Analysis
Based on a formulaic power 
analysis we need 9 reps per 
genotype.

● You want to compare root length in WT vs a 
mutant. You have 3 preliminary reps from 
each genotype. What test will you use and 
how many replicates will you need?
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Scenario 2
● You have categorized plants from two 

genotypes as diseased or healthy and you 
want to understand if there is an interaction 
between genotype and disease.
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Scenario 2
● You have categorized plants from two 

genotypes as diseased or healthy and you 
want to understand if there is an interaction 
between genotype and disease.

Statistical Test 
We have unpaired nominal 
data so we will use a Chi 
squared test
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Scenario 2
● You have categorized plants from two 

genotypes as diseased or healthy and you 
want to understand if there is an interaction 
between genotype and disease.

Power Analysis
What power do we have in 
this experiment and how 
many reps would we need 
for 80% power?
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Scenario 2
● You have categorized plants from two 

genotypes as diseased or healthy and you 
want to understand if there is an interaction 
between genotype and disease.

Power Analysis
To calculate power we need:

● Effect size = 
● N = 
● DF = 
● Alpha = 0.05
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Scenario 2
● You have categorized plants from two 

genotypes as diseased or healthy and you 
want to understand if there is an interaction 
between genotype and disease.

Power Analysis
To calculate power we need:

● Effect size = 
● N = 5+9+7+7 = 28
● DF = (2-1)*(2-1)=1
● Alpha = 0.05
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Scenario 2
● You have categorized plants from two 

genotypes as diseased or healthy and you 
want to understand if there is an interaction 
between genotype and disease.

Power Analysis
To calculate power we need:

● Effect size = 0.144 (χ2 stat) 
● N = 5+9+7+7 = 28
● DF = (2-1)*(2-1)=1
● Alpha = 0.05
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Scenario 2
● You have categorized plants from two 

genotypes as diseased or healthy and you 
want to understand if there is an interaction 
between genotype and disease.

Power Analysis
Due to a small effect size we 
would need a very large 
sample to reach 80% power. 
In this data 
we only have 
~12% power.
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Scenario 3
● You have identified a gene that you expect 

increases plant height by about 15%. Based 
on previous literature you expect WT to grow 
to ~30cm (±3cm) in height and you want to 
know how many replicates you’ll need of 
your mutant, assuming you have to use a 
less powerful non-parametric test.
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Scenario 3
● You have identified a gene that you expect 

increases plant height by about 15%. Based 
on previous literature you expect WT to grow 
to ~30cm (±3cm) in height and you want to 
know how many replicates you’ll need of 
your mutant, assuming you have to use a 
less powerful non-parametric test.

Why a Non-parametric?
Here we expect 1 gene to have 
a strong effect on a phenotype, 
that could push use from a 
Normal to a Log-Normal
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Scenario 3
● You have identified a gene that you expect 

increases plant height by about 15%. Based 
on previous literature you expect WT to grow 
to ~30cm (±3cm) in height and you want to 
know how many replicates you’ll need of 
your mutant, assuming you have to use a 
less powerful non-parametric test.
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Scenario 3
● You have identified a gene that you expect 

increases plant height by about 15%. Based 
on previous literature you expect WT to grow 
to ~30cm (±3cm) in height and you want to 
know how many replicates you’ll need of 
your mutant, assuming you have to use a 
less powerful non-parametric test.

Statistical Test
We are comparing one group 
to a specified value and using 
a non-parametric test, which 
takes us to the Wilcoxon test.



71 / 115

Scenario 3
● You have identified a gene that you expect 

increases plant height by about 15%. Based 
on previous literature you expect WT to grow 
to ~30cm (±3cm) in height and you want to 
know how many replicates you’ll need of 
your mutant, assuming you have to use a 
less powerful non-parametric test.

Power Analysis

We have to simulate this one.
● μ = 
● σ = 
● Distribution = T_4(μ, σ)
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Scenario 3
● You have identified a gene that you expect 

increases plant height by about 15%. Based 
on previous literature you expect WT to grow 
to ~30cm (±3cm) in height and you want to 
know how many replicates you’ll need of 
your mutant, assuming you have to use a 
less powerful non-parametric test.

Power Analysis

We have to simulate this one.
● μ = 30*1.15
● σ = 3
● Distribution = T_4(μ, σ)

Note here we use T for simplicity
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Scenario 3

We specify some hyperparameters
To control the simulation.
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Scenario 3
5000 times per each number of reps
We generate a sample of data and

Record the mean.
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Scenario 3
We run our test and record the result.
Here I returned extra information for

The first few tests.
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Scenario 3
● You have identified a gene that you expect 

increases plant height by about 15%. Based 
on previous literature you expect WT to grow 
to ~30cm (±3cm) in height and you want to 
know how many replicates you’ll need of 
your mutant, assuming you have to use a 
less powerful non-parametric test.

Power Analysis

We have to simulate this one.
● μ = 30*1.15
● σ = 3
● Distribution = T_4(μ, σ)
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Scenario 3

Here we’d check the power curve and
Conclude that having more than 10 reps

Should be sufficient.
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Scenario 4
● You noticed an interesting correlation 

between root length and panicle weight as 
part of a subgroup analysis. You don’t have 
a statistically significant correlation and want 
to know how many reps you’d need in a new 
experiment to see one.
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Scenario 4
● You noticed an interesting correlation 

between root length and panicle weight as 
part of a subgroup analysis. You don’t have 
a statistically significant correlation and want 
to know how many reps you’d need in a new 
experiment to see one.

Statistical Test
We are explicitly interested in a 
correlation test here.



80 / 115

Scenario 4
● You noticed an interesting correlation 

between root length and panicle weight as 
part of a subgroup analysis. You don’t have 
a statistically significant correlation and want 
to know how many reps you’d need in a new 
experiment to see one.

Power Analysis
To calculate reps we need:
– Power
– Alpha
– Effect size (correlation)
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Scenario 4
● You noticed an interesting correlation 

between root length and panicle weight as 
part of a subgroup analysis. You don’t have 
a statistically significant correlation and want 
to know how many reps you’d need in a new 
experiment to see one.

Power Analysis
To calculate reps we need:
– Power
– Alpha
– Effect size (correlation)
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Scenario 4
● You noticed an interesting correlation 

between root length and panicle weight as 
part of a subgroup analysis. You don’t have 
a statistically significant correlation and want 
to know how many reps you’d need in a new 
experiment to see one.

Here we show the effect size 
on Y as though it were a 
function of the number of reps 
needed to reach 80% power.

This is a little different, 
remember any aspect can be 
the outcome.
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Scenario 5
● You want to test the difference in two 

genotypes growth rates under early heat 
stress over 25 days of imaging. You expect a 
difference of ~10cm2 in size at the end of the 
experiment and relatively minor differences 
in growth rate and inflection.

How many reps do you need assuming a 
logistic growth model?
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Start

One group to 
specified value

Comparing two groups 
no covariates

Comparing two or more 
groups with covariates

R,I O N

G NG

Wilcoxon test

Wilcoxon signed 
rank test

One sample 
t-test

Chi-square 
test

Paired Un-paired

Paired t-test

McNemar Chi-
square test

R,I O N
R,I O N

G NG

G NG

Unequal 
variance t-test

Wilcoxon 
rank sum test

Fisher or Chi-
Squared test

No block 
effects

With block 
effects

Pairwise

Model 
Building

Fixed 
Effects

Contrasts

Random 
effects

Correlation 
Structure

* If the outcome and main predictor are both two-level factors, Breslow-Day and Cochren-Mantel-Hanzel tests are better

TemporalNon 
Temporal

R,I O N

Identity link

G NG

Transform link

Logit link

Probit link

Contrasts

Longitudinal
Model Building

Association of two 
variables

Spearman 
Correlation

G NG

R,I O N

Linear 
Regression

Contingency 
coefficients

Response 
Variable

R,I

O

N

- Ratio, Interval

- Ordinal

- Nominal

G  - Gaussian

NG - Not Gaussian

Scenario 5
● You want to test the difference in two 

genotypes growth rates under early heat 
stress over 25 days of imaging. You expect a 
difference of ~10cm2 in size at the end of the 
experiment and relatively minor differences 
in growth rate and inflection.

How many reps do you need assuming a 
logistic growth model?
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Scenario 5
● You want to test the difference in two 

genotypes growth rates under early heat 
stress over 25 days of imaging. You expect a 
difference of ~10cm2 in size at the end of the 
experiment and relatively minor differences 
in growth rate and inflection.

How many reps do you need assuming a 
logistic growth model?

Statistical Test
We have temporal data and 
will need to build a longitudinal 
model.
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Scenario 5
● You want to test the difference in two 

genotypes growth rates under early heat 
stress over 25 days of imaging. You expect a 
difference of ~10cm2 in size at the end of the 
experiment and relatively minor differences 
in growth rate and inflection.

How many reps do you need assuming a 
logistic growth model?

Power Analysis
This is a case where we have 
to use a simulation.
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Scenario 5
● You want to test the difference in two 

genotypes growth rates under early heat 
stress over 25 days of imaging. You expect a 
difference of ~10cm2 in size at the end of the 
experiment and relatively minor differences 
in growth rate and inflection.

How many reps do you need assuming a 
logistic growth model?

Power Analysis
This is a case where we have 
to use a simulation.
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Scenario 5

Power Analysis
This is a case where we have 
to use a simulation.
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For each N in our rep range, iterate 



90 / 115

Simulate a dataset

Note that these datasets have
Some sampling variation, set to

1/10th of the mean for each
Parameter.
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Fit a model
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Record test results



93 / 115

Summarize results by N reps
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Power Analysis
This is a case where we have 
to use a simulation.
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Scenario 5

Power Analysis
But here we input fixed 
parameters, what if we don’t 
have that information?
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Scenario 5

Power Analysis

● Instead of A1 = 180 we now will say A1 ~ 
N(180, 5)
– A2 ~ N(160,5)
– B1 ~ N(12, 1)
– B2 ~ N(13, 1)
– C1 ~ N(3, 0.25)
– C2 ~ N(3.5, 0.25)



97 / 115

Start

One group to 
specified value

Comparing two groups 
no covariates

Comparing two or more 
groups with covariates

R,I O N

G NG

Wilcoxon test

Wilcoxon signed 
rank test

One sample 
t-test

Chi-square 
test

Paired Un-paired

Paired t-test

McNemar Chi-
square test

R,I O N
R,I O N

G NG

G NG

Unequal 
variance t-test

Wilcoxon 
rank sum test

Fisher or Chi-
Squared test

No block 
effects

With block 
effects

Pairwise

Model 
Building

Fixed 
Effects

Contrasts

Random 
effects

Correlation 
Structure

* If the outcome and main predictor are both two-level factors, Breslow-Day and Cochren-Mantel-Hanzel tests are better

TemporalNon 
Temporal

R,I O N

Identity link

G NG

Transform link

Logit link

Probit link

Contrasts

Longitudinal
Model Building

Association of two 
variables

Spearman 
Correlation

G NG

R,I O N

Linear 
Regression

Contingency 
coefficients

Response 
Variable

R,I

O

N

- Ratio, Interval

- Ordinal

- Nominal

G  - Gaussian

NG - Not Gaussian

Scenario 5

Power Analysis



98 / 115

Scenario 5
This is the only change we made.

But where do we get these distributions?

In practice this is similar to developing
priors for a Bayesian model. It relies on

your expertise and understanding some.

These datasets now have population
Variation AND sampling variation
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Simulation Parameters and Priors
● There is more discussion about priors in the Stats in pcvr 

workshop.
● “Hard Headed” priors are generally suggested in the Bayesian 

literature.
– To make this more concrete we’ll anthropomorphize some 

distributions.
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Strong Priors 😡

● Negative: This guy has OPINIONS and they are 
not going to change based on your paltry 
“evidence”

● Positive: This guy is far from gullible, he will not 
exaggerate and aggrandize bad information.

Example Scenarios
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Strong Priors 😡

Example Scenarios
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Mild (weak) Priors 🤨

● Negative: This guy is not a domain expert, he is 
not very sure about what to expect. If you don’t 
have much (data) to contribute then your 
conclusions will be limited.

● Positive: This guy knows he is not a domain 
expert, he is able to contribute to a 
conversation and collaborate without talking 
over the evidence you present.

Example Scenarios
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Mild (weak) Priors 🤨

Example Scenarios
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Mild (weak) Priors 🤨

Example Scenarios
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Flat Priors 😐

● Negative: This guy doesn’t understand the 
world at all. He contributes nothing to the 
conversation and was only invited to round out 
the numbers.

● Positive: “Unbiased” in the eyes of many 
people, but those people are confusing 
“unbiased” with “ignorant”.

Example Scenarios
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Flat Priors 😐

Example Scenarios
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Priors vs Simulations

Example Scenarios

The most important difference
Here is that priors are updated
With your experiment’s data.

In the simulation, the distribution
is all you have, so having pilot
Data becomes very important.
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Scenario 5

Power Analysis
● Now we have very different 

power curves
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Scenario 5

Power Analysis
● Now we have very different 

power curves

● These new curves can be 
much more realistic, 
depending on your 
assumptions.
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Your Assumptions
● Think about what you build into 

the simulation

● Here it’s very clear why our 
asymptote test is higher power, 
there is less overlap in our 
simulated parameters.
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Simulations need guidance
● Setting parameters for simulations requires some 

expectation of what you could see.
– This can be a similar process conceptually to setting 

priors for Bayesian analyses.
● Randomness is introduced by simulating data per each 

iteration or sampling a total dataset per simulation. 
– Your results will be as generalizable as your simulated 

data.
● If you are aiming to reach a precise power cutoff then this 

involves iterating over sample sizes.
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Conclusion
● Are there other questions about this content?
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Conclusion
● Results are a function of statistical power

– Statistical power is a function of experimental 
design, methods, and replication.

– Methods are a function of time
– Replication is a function of money

● You will have to optimize the utility function of 
conclusions ~ time + money for your own 
research. There is no formulaic approach to that 
problem.
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Conclusion
● Power is a function of experimental design 

through effect sizes, replication, and 
assumptions.

● Planning experiments while keeping statistical 
power in mind will help you when it comes time 
to analyze data.

● Both formulaic and simulation based power 
analyses have their place and can be useful.
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