Power Analysis (in R)

Josh Sumner
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The Scientific Process

1) Theorize question or problem
2) Develop Hypotheses
3) Design Experiment

4) Record observations
5) Analyze observations
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- Not all designs are created equally —

- poor design leads to impossible inferences
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The Scientific Process

1) Theorize question or problem

2) Develop Hypotheses
3) Design Experiment

4) Record observations
5) Analyze observations <&

- Not all designs are created equally —

- poor design leads to impossible inferences

- Not all observations are created equally —

- poor statistical methods leads to false-positives and false-negatives
- continuous > ordinal >= nominal
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The Scientific Process

1) Theorize question or problem

2) Develop Hypotheses
3) Design Experiment

4) Record observations
5) Analyze observations <&

- Not all designs are created equally —

- poor design leads to impossible inferences

- Not all observations are created equally —

- poor statistical methods leads to false-positives and false-negatives
- continuous > ordinal >= nominal

- Not all methods are created equally

- many methods can only test a handful of hypotheses and use p-values
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The Scientific Process

1) Theorize question or problem
2) Develop Hypotheses
3) Design Experiment

4) Record observations
5) Analyze observations

- Before starting you should consider

What outcomes are possible?

Are the questions you're interested in answerable with the design?
What format will your data be in?

What test will you use and what hypotheses are possible in it?

Do you have the replication required?
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The Scientific Process

The Stats in RCR
Workshop gets into
These steps some

1) Theorize question or problem |
2) Develop Hypotheses |
3) Design Experiment

And talks about how
To know when you're

KOff of the flow chart)

. )
5) Analyze observations I ( The Troubleshooting In R

workshop gets into some

L coding

problems in this step. )

- Before starting you should consider

What outcomes are possible?
Are the questions you're interested in answerable with the design?

What format will your data be in?
What test will you use and what hypotheses are possible in it?
Do you have the replication required?

(Focus of the\
Stats In R and
Stats in pcvr

‘ Workshops, but
will be part of

Q:oday as wellj
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The Scientific Process

1) Theorize question or problem
2) Develop Hypotheses
3) Design Experiment

4) Record observations
5) Analyze observations

- Before starting you should consider

— What outcomes are possible?

Are the questions you're interested in answerable with the design?

What format will your data be in?

What test will you use and what hypotheses are possible in it? o =\
ower analysis is

c c . \

— Do you have the replication required?: | useful in method
development but
here we’ll focus on
@xperimental designj
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- Definitions

- Statistical Power and Significance
- Formulaic vs Simulated

- Statistics and Power Analysis Workflow
- Example Scenarios
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Start

\ \ | ) \ i
‘\ ’/, ~\ —~ \\
( One group to Comparing two groups L Comparing two or more 1 ( Association of two

specified value no covariates groups with covariates variables
RN

N No block With block L (
RI O N ‘ Paired  Un-paired effects effects ‘ R, ‘707‘ ‘7’\‘
. Contingency

G NG Chi-square Non Temporal G NG

\_' test Temporal coefficients
: | L Spearman
[ Wilcoxon test] — I i
Response ! Correlation
Variable Linear

One sample S Regression
by S

©)

|
o
©
z

G NG
‘/ R,IH ‘—6‘ ‘—l\ﬂ \\R,I” ‘79‘ U\l‘ [Transform link }7

h'_—r T T Cidentity link |
‘a - Ratio, Interval
G NG McNemar Chi- L Longitudinal | Model il
square test G NG Model Building Building G - Gaussian
Wilcoxon signed } \ ‘ : ‘ ‘ N .
Fixed Random NG - Not Gaussian
‘ rank test ‘ Unequal ] Effects effects
variance t-test ) .
[Paired t-test } ] | | \ o \ - Ordinal
Wilcoxon Fisher or Chi- Contrasts | | Correlation N - Nominal
rank sum test Squared test Structure ‘l‘ - Nomina

* |f the outcome and main predictor are both two-level factors, Breslow-Day and Cochren-Mantel-Hanzel tests are better
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-~ - Ratio, Interval
R,| * Continuous scale measurements
* Ex: 1.3, 3.45, 2.98, ...
* Plant height, CFUs, g-PCR, Watersoaking area, etc

: - - Ordinal
O * Ordered discrete scale measurements
X ) * Ex: 19, 13, 18, ...
* Severity scores, hull vertices, number of leaves, etc

- Nominal
N * Non-ordered discrete scale measurements
N * Ex: Red, Yellow, Cyan, ...
* Diseased vs not-diseased, dead vs alive, punnett squares, etc
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( . - Ratio, Interval
R,| - Continuous scale measurements
- Ex: 1.3, 3.45, 2.98, ...
- Plant height, CFUs, g-PCR, Watersoaking area, etc
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-~ - Ratio, Interval
R,| - Continuous scale measurements
- Ex: 1.3, 3.45, 2.98, ...
- Plant height, CFUs, g-PCR, Watersoaking area, etc

. NG - Not Gaussian distributed
- Usually means non-parametric test
- If it follows a different distribution,
likelihood ratio test or other methods using
that distribution

G - Gaussian distributed
- Parametric testing
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-~ - Ratio, Interval
R,| - Continuous scale measurements
- Ex: 1.3, 3.45, 2.98, ...
- Plant height, CFUs, g-PCR, Watersoaking area, etc

. NG - Not Gaussian distributed
- Usually means non-paramentric test
- If it follows a different distribution,
likelihood ratio test or other methods using
that distribution

G - Gaussian distributed ]
- Parametric testing

. 40
- Is data gaussian?
. ; > shapiro.test(datsvalues[datsGroup == "Gaussian"])
1) Visualize data > 30
2) Shapiroltest() shapiro-Wilk normality test
3) kS.teSt() data: datSValues[datSGroup == "Gaussian"]

W= 08.98484, p-value = 6.30%4

20

> shapiro.test{datsValues[datsGroup == "Not Gaussian"])

Shapiro-Wilk normality test

055l R WELGIOMINS 5.5 Al e oo D000
C-@ i PE U o0 WP BP P SR WN B BB o B o

data: dat$vValues[dat$Group == "Not Gaussian"] 10
W= 0.8689%, p-value = 6.384e-08

Gaussian Non-Gaussian
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- Ratio, Interval
- Continuous scale measurements
- Ex: 1.3, 3.45, 2.98, ...

- Plant height, CFUs, g-PCR, Watersoaking area, etc

1 NG - Not Gaussian distributed
- Usually means non-paramentric test
- If it follows a different distribution,
likelihood ratio test or other methods using
that distribution

G - Gaussian distributed
- Parametric testing

Gaussian Sample QQ plot
45

40

- Is data gaussian?

35

1) Visualize data > 30

- QQ plots
2) shapiro.test()

3) ks.test()

25

20




- Ratio, Interval
- Continuous scale measurements
- Ex: 1.3, 3.45, 2.98, ...

. NG - Not Gaussian distributed

that distribution

G - Gaussian distributed 50
- Parametric testing

40

- Is data gaussian?

30

1) Visualize data >

- QQ plots
2) shapiro.test() 20

3) ks.test()

- Plant height, CFUs, g-PCR, Watersoaking area, etc

- Usually means non-paramentric test
- If it follows a different distribution,
likelihood ratio test or other methods using

Non-Gaussian Sample QQ plot




-~ - Ratio, Interval
R,| - Continuous scale measurements
- Ex: 1.3, 3.45, 2.98, ...
- Plant height, CFUs, g-PCR, Watersoaking area, etc

I NG - Not Gaussian distributed
- Usually means non-paramentric test
- If it follows a different distribution,
likelihood ratio test or other methods using
th at d iStri b UtiO n Percentage of Significant Shapiro Tests

(G - Gaussian distributed 10 ~ 3.1% signit
B 2

A e
1 2

- Parametric testing | // ?
- Is data gaussian? i el |

7~
rd

(]
[ ]

0

-1 0 1
n1000 ~ 19.8% signif n5000 ~ 79.7% signif
4

1) Visualize data
- QQ plots

Sample Quantiles

N

more useful than
tests of normality.

\
N

2) shapiro.test() . -
3) ks.test() 2 :

Broadly, ’ 0

visualizations are - .

Theoretical Quantiles
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[ -~ - Ratio, Interval
R,| - Continuous scale measurements
- Ex: 1.3, 3.45, 2.98, ...
- Plant height, CFUs, g-PCR, Watersoaking area, etc

I NG - Not Gaussian distributed
- Usually means non-paramentric test
- If it follows a different distribution,
likelihood ratio test or other methods using
that distribution
Percentage of Significant KS Tests

G - Saussian distributed

- Parametric testing It I
oo o o - 1 -
- 0 -
- Is data gaussian? ; /
m-1 il 2 .~
% ° ° 3 ‘/‘
1) Visualize data s 4 0 i 2 1 0 1 2
- QQ plots © n1000 ~ 100% n5000 ~ 100%
P 2
£ e 4 P
&

..\

2) shapiro.test() .
3) ks.test() 2 2

Broadly, 0 0

visualizations are 2 2

more useful than )

tests of normality. = o

Theoretical Quantiles
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- Ratio, Interval
R,| - Continuous scale measurements
- Ex: 1.3, 3.45, 2.98, ...
- Plant height, CFUs, g-PCR, Watersoaking area, etc

. NG - Not Gaussian distributed
- Usually means non-paramentric test
- If it follows a different distribution,
likelihood ratio test or other methods using
that distribution

G - Gaussian distributed
- Parametric testing

- = Ordinal
O - Ordered discrete scale measurements
) - Ex: 19, 13, 18, ...
- Severity scores, hull vertices, number of leaves, etc

- Nominal
N - Non-ordered discrete scale measurements
,/ - Ex: Red, Yellow, Cyan, ...
- Diseased vs not-diseased, dead vs alive, punnett squares, etc
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Start

. ~ - -

One group to Comparing two groups Comparing two or more Association of two
specified value | | no covariates groups with covariates variables

‘ ‘ , No block With block
R,I

\ \ N ‘ Paired  Un-paired effects effects ‘ R, ‘ Oﬁﬂ\ \ N }j
i Contingency
G Chi-square m s
I-squ Non Temporal G NG coefficients

G N
test Temporal
[ Wilcoxon test] | L Spearman
Response Correlation
Variable

©)

Linear

s RI O N
G NG |Logitlink |
N I L Probitfink |
[Ril[ ol N) *F%l'\{jf\$l/ Transform link |
|Identity link |
NeXt We’” deﬁne . \a - Ratio, Interval
Longitudinal | Model -
The gray terms and Model Building ~ Building o - Gaussian
| |
SO m e pOWG I Fixed Random NG - Not Gaussian
I Effects effects -
\ analysis terms | | \ @ -orns
Wilcoxon Fisher or Chi- Contrasts | | Correlation P .
t rank sum test! Structure ‘l‘ - Nominal

* |f the outcome and main predictor are both two-level factors, Breslow-Day and Cochren-Mantel-Hanzel tests are better
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Type 1 - A false positive
- Detecting an effect when none truly exists.

Error
Type 2 - A false negative
Error - Failing to detect an effect that does truly exist.
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Type 1 - A false positive
- Detecting an effect when none truly exists.

Error
Type 2 - A false negative
Error - Failing to detect an effect that does truly exist.
Alpha - Probability of a false Positive

- This is generally set to 0.05 just based on convention
Power - Probability of a false negative

- Generally we aim for >80% power
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Type 1 - A false positive
- Detecting an effect when none truly exists.

Error
Type 2 - A false negative
Error - Failing to detect an effect that does truly exist.
Alpha - Probability of a false Positive

- This is generally set to 0.05 just based on convention
Power - Probability of a false negative

- Generally we aim for >80% power
Statistical - Conditional probability of the data given no effect

: - Having a P-value below alpha, used for saying that the
Significance Null hypothesis is unlikely.
Effect Size - The magnitude of an effect

- Stronger effects are easier to detect.
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Type 1 - A false positive

Error - Detecting an effect when none truly exists.
Type 2 - A false negative

Error - Failing to detect an effect that does truly exist.
Alpha - Probability of a false Positive

- This is generally set to 0.05 just based on convention

Power - Probability of a false negative
- Generally we aim for >80% power

Statistical - Conditional probability of the data given no effect
: o - Having a P-value below alpha, used for saying that the
Significance Null hypothesis is unlikely.

Effect Size - The magnitude of an effect

- Stronger effects are easier to detect.
Null - The hypothesis you aim to reject with your experiment
Hypothesis - This is almost always that there is no effect.
Alternative - The hypothesis you propose in place of the Null
Hypothesis - This is the hypothesis you would state in your introduction
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- Statistical Power and Significance
- Formulaic vs Simulated

- Statistics and Power Analysis Workflow
- Example Scenarios

4 )
That was a lot of definitions. If you

have questions let’'s go over them,

then let’'s take a break.
\_ J
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Statistical Significance

* What goes into a statistically significant result?
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Statistical Significance

We collect one sample of data

10 12 14
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Statistical Significance

We parameterize a T distribution based on this data

1.00
0.75
0.50

0.25

0.00 ®

10 12 14
Value
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Statistical Significance

We find our test statistic

1.00
0.75
0.50

0.25

0.00 °

10 12 14
Value
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Statistical Significance

And place the T stat on a standard T distribution
0.4

0.3 0.393 0.393

> 0.2

0.1

> pt(-abs(tstat), nul, lower.tail = TRUE) + pt(abs(tstat), nul, lower.tail = FALSE)
[1] 0.7853765

> t.test(s1$x, mu= nullMean)S$p.value
[1] 0.7853765
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Statistical Significance

* P-values are a product of the data and
assumptions.

* Posterior Probabilities are a product of data,
priors, and assumptions.

* Next we’ll look at how power is a function of
effect size, alpha, and replication.
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Visualizing Power

Say we want to compare the means of Gaussian data




Visualizing Power

We will use a T distribution to compare means
Degrees of Freedom comes from our data
0.4

0.3
5. 02

0.1

0.0

-10 -5 0 5 10
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Non-Centrality in Power Analysis

* Frequentist tests generally have a distribution for the Null
hypothesis, but we're interested in the probability under

the alternative hypothesis.
 To evaluate that we’'ll use the Non-Central T Distribution.

— Non-centrality here changes the distribution from being
when the Null is true to when the Null is false (ie, when

there Is an effect).
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Visualizing Power

We use the Non-Central T Distribution based on our effect size
This is the distribution when the Null Hypothesis is False

0.4

M1 — M2

0%2+02

2
0.3
5. 0.2
0.1
0.0
-10 -5 0 5 10
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Visualizing Power

We use the Non-Central T Distribution based on our effect size
This is the distribution when the Null Hypothesis is False

0.4

B

0%+03
2

D = —0.888

0.3

N
~02  NCP =\E xD=—2174
0.1

0.0

-10 -5 0 5 10
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Visualizing Power

We use the Non-Central T Distribution based on our effect size
This is the distribution when the Null Hypothesis is False

0.4
B

0%+03
2

D = —0.888

0.3
N
~02  NCP =\Ex D-—2174
0.1 Tcritla = i 2.2

0.0

-10 -5 0 5 10
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Visualizing Power

Power ~0.50927

We divide the space based on the Centralized (Null) T Distribution's critical values

I
|
I
|
03 0.50924 ) | 4e-05
|
: Power = Sum of Non-Central T
0.2 | That is past these values
> |
: Type 2 Error = Non-Central T)
| Thatis inside these values.
0.1 [
: This is the complement. |
|
0.0 :

-10 -5 0 5 10
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Visualizing Power

Keeping D and a but changing N changes Power

1.0

0.8
:
g 0.6
Note, so far this is algebra.
Totally deterministic.
0.4
0.2

25 50 75 100
Number of Reps
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Formulaic Power Analysis

e Glven assumptions this is just an equation.

* Formulaic approaches use the steps we just
went over to calculate some missing value out
of:

- Effect size

- Power

- Alpha

- Number of Reps
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Formulaic Power Analysis

e Glven assumptions this is just an equation.

* Formulaic approaches use the steps we just
went over to calculate some missing value out
of:

- Effect size

- Power

- Alpha

~ e . )
Number of Reps Assumptions:

- T test assumptions
- Equal Variance (given 2 samples)
\ Formula components are Fixed )
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Formulaic Power Analysis

* Glven assumptions this Is just an equation.

* There are several more formulaic options
beyond T tests.

/stats: :power.anova.test

* R packages pwr, ’stats: :power.t.test
POWGFUpR, and /stats::power.prop.test
WebPower expand on the

I ' v, .
options In stats:: JpWr: :pwr.2p.test

Jpwr::pwr.2p2n.test
* In general these will have  ?pwr::pwr.t2n.test
more assumptions than Zpwr::pwr.chisq.test

their respective tests. pwr:ipwr.f2. test
pwr::pwr.r.test
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Simulation Based Power Analysis

* To relax assumptions/test power in more
complex settings we’ll often turn to simulation
based power analysis.
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Simulation Based Power Analysis

* To relax assumptions/test power in more
complex settings we’ll often turn to simulation
based power analysis.

* Generally this will be more conservative than
formulaic power analysis because simulated
data is more variable.

- Like models all simulations are wrong, but some are
useful.

— The simulation is often more similar to how newly
collected data will behave, but this all depends on
how you simulate data.
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Simulation Based Power Analysis

1.00 N reps
—— formulaic 100
75
50
0.75
25
5 Difference in these curves 0.4
2 Is a product of the variability
O 050 In our simulated data.
N reps
S1 i ~ N(mean(S1), sd(S1)) 100
\SZ_i ~ N(mean(S52), sd(SZ))j 75
0.25 ! 50
yo E
®
25 50 75 100 -25 -20 -15 -10 -5 0 5

Number of Reps (total) Effect Size
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Simulation Based Power Analysis

1.00 N reps
—— formulaic 100
| 75
A 50
0.75
25
® 04 -02 0.0 0.4
= .
o
O 050 - N
The mean difference and N reps
Effect size have the same
Center, but they have spread. 75
\_ J
0.25 |
| 50
J"L 25
L
25 50 75 100 25 20 -15 -10 5 0 5
Number of Reps (total) Effect Size
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- Statistics and Power Analysis Workflow

- Example Scenarios

~ ™

Questions about Power
or Significance?

\_ y,
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- Statistics and Power Analysis Workflow

- Example Scenarios

4 ™
That was some stats

Let’'s take a break
\_ Yy,
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Sta

rt

\\

Association of two

o N

Contingency
coefficients

.| Spearman
Correlation

\ R,I| - Ratio, Interval

G - Gaussian

NG - Not Gaussian

One group to Comparing two groups | | Comparing two or more
specified value no covariates groups with covariates variables
fﬂ No block With block m
RI O \ N Paired  Un-paired effects effects ‘\R’I, o
G NG Chi-square Non Temporal G NG
\_' test Temporal
. | L
[ Wilcoxon test] Res_ponse .
L Variable Linear
RIL O N
— ] [
G NG Logitlink |
R I L Probitlink |
— L RI | O | N .
\ R, \ @) \ ‘ N \ = ‘\——J T [Transform link |
T T |identity link |
G NG McNemar Chi- L Longitudinal | Model
square test =W re Model Building Building
Wilcoxon signed ‘ _ . ‘ ‘
_Contrasts F|Xed Random
IS ‘ Unequal — Effects effects
_ variance t-test
[Palred t-test ]

]
Wilcoxon Fisher or Chi-
rank sum test || Squared test

Contrasts

Correlation
Structure

‘ - Ordinal

‘ - Nominal

0
N

* |f the outcome and main predictor are both two-level factors, Breslow-Day and Cochren-Mantel-Hanzel tests are better
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Scenarios

* Find the test you need given the data
* Find the relevant information for power analysis
* Decide on formulaic vs simulation based
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- Scientific Process

- Definitions
- Power and Significance
- Formulaic vs Simulated

- Statistics and Power Analysis Workflow
- Example Scenarios
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Start

[ [ . ‘
One group 1o Comparing two groups Comparing two or more

]
=~ Scenario 1
specified value no covariates _ groups with covariates | variables

* You want to compare root length in WT vs a
mutant. You have 3 preliminary reps from
each genotype. What test will you use and
how many replicates will you need?

21 |

N
o

Root Length
©

—
(o]

!

Mutant WT
Genotype

Y. 53 /115
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Comparing two groups
no covariates

Paired Un-paired ScenarIO 1
|*£R,.*||ID*|[1N' L * You want to compare root length in WT vs a
hﬁgf mutant. You have 3 preliminary reps from
S NS | ((MaNemar Chi- | each genotype. What test will you use and
L[Enmam} how many replicates will you need?
!
T T 2 ’
R1J[ 0] lﬂ)j
’_‘\7 Fisher or Chi- 20 )
G| |NG -Squaredtest
Wiliuxunt \

Root Length
©

-y
(o]

!

Mutant WT
Genotype
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Comparing two groups
no covariates

Paired Un-paired ScenarIO 1
mﬁ?‘ L * You want to compare root length in WT vs a
LT mutant. You have 3 preliminary reps from
S NS | ((MaNemar Chi- | each genotype. What test will you use and
Mgnmmd} how many replicates will you need?
!
ﬁnﬁﬁ?ﬁ ) !
’_‘\7 “;r;erﬂr Chi- . . ’
C Statistical Test .
We have unpaired

continuous data. With 3
reps it is hard to say but
we’ll expect gaussian data
so we’ll use Welch’s T Test. 1 '

!

Mutant WT
Genotype

Y. 55/ 115
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Comparing two groups
no covariates

Paired Un-paired ScenarIO 1
|*£R,.*||ID*|[1N' L * You want to compare root length in WT vs a
TJ mutant. You have 3 preliminary reps from
S| e each genotype. What test will you use and
Mgnmmd} how many replicates will you need?
’
ﬁﬁn{?ﬁ ! 7
’_‘\7 “;r;erﬂr Chi- . °
gl Power Analysis
To calculate reps we need: .
+ Effect size = :
« SD = [
 Power =0.8 i I
[ ) Alpha — 0.05 Mutant WT

Genotype
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Comparing two groups
no covariates

Paired Un-paired ScenarIO 1
|*£R,.*||ID*|[1N' L * You want to compare root length in WT vs a
TJ mutant. You have 3 preliminary reps from
S| e each genotype. What test will you use and
Mgnmmd} how many replicates will you need?
’
ﬁﬁn{?ﬁ ! ?
’_‘\7 “;r;erﬂr Chi- . °
gl Power Analysis
To calculate reps we need:

Unegual
variance t-test

Root Length
©

e Effectsize =3

-y
(o]

e SD = |
e Power =0.8 ! I
* Alpha =0.05 W enotype
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Comparing two groups
no covariates

o Scenario 1
el

Ri)[0)[n] * You want to compare root length in WT vs a
TJ mutant. You have 3 preliminary reps from

G| NG [McNemar Chi- ]

O | |squaretes each genotype. What test will you use and
L[E"mmﬂ how many replicates will you need?
-

21

L |
_Rﬁ,l ) |~ﬂ)_‘ _
ﬂj Power Analysis

20

Based on a formulaic power

Root Length
©

Dreqiel analysis we need 9 reps per
varance t-test
genotype. N .
> res <- power.t.test(n = NULL, delta = 3,
+ sd = 2, sig.level = 0.05, °
+ power = 0.8, type = "two.sample", 17
+ alternative = "two.sided") l
;1§e;11ng(res$n) Mutant WT

Genotype
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Start

One group to Comparing two groups Comparing two or more Assocatlon of two S C e n ar I O
) variables

specified value

no covariates | | groups with covariates

You have categorized plants from two
genotypes as diseased or healthy and you
want to understand if there is an interaction

between genotype and disease.

- ..
: ..
mut T

Genotype

59/115
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Comparing two groups
no covariates

—— Scenario 2

Paired Un-paired

5

R0 L * You have categorized plants from two

— genotypes as diseased or healthy and you
o) 1) | (Menemarcnt) want to understand if there Is an interaction

square test

L
Mmmgm] between genotype and disease.

—

rank test

Paired t-test

Status

Unequal
varance t-test

IR,I] ol N J—‘
Fisher or Chi-
G| |NG Squared test
healthy
Wilcoxon Count
r‘ar‘IkSur‘ntESt I 9

a [e2] ~ o]

diseased

mutant WT

Genotype
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no covariates

—— Scenario 2

Paired Un-paired

{ Comparing two groups ]
o

L * You have categorized plants from two

5

(RiJ[ 0]
— I genotypes as diseased or healthy and you
O (NS | ((Metiemar chi- | want to understand if there is an interaction
Mrnmmm] between genotype and disease.
bk
1) (o) (N .
Hj Statistical Test

Count

We have unpaired nominal
data so we will use a Chi
sqguared test

Wilcoxon
rank sum test
Unequal
varance t-test

mutant WT

Genotype

61/ 115
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Comparing two groups
no covariates

o Scenario 2
N

=a)(0] (W) * You have categorized plants from two
| genotypes as diseased or healthy and you
o) (NS | ((MoNemar Chi- | want to understand if there is an interaction
L[Enmsgm} between genotype and disease.

%. N
i (o) (- |
ﬂj Power Analysis

What power do we have |n > chisq.test(df$genotype, df$status)

this experiment and how ooty e LR e
many reps would we need
data: dfSgenotype and dfS$status
for 80% power? X-squared = 0.14583, df = 1, p-value = 0.7025

> table(df$genotype, df$status)

diseased healthy
mutant 5 9
WT 7 7
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Comparing two groups
no covariates

= Scenario 2
|*£R,.*||ID*|[1N' L * You have categorized plants from two
TJ genotypes as diseased or healthy and you
o/ (NS | | Metiemar ohi- | want to understand if there Is an interaction
L[':’;"ni“:;i?sg"“’”} between genotype and disease.
ﬁnﬁﬁ?ﬁ
’_‘\7 “;ralerur Chi- .
g Power Analysis

To calculate power we need:
« Effect size =

° N —_

° DF —_ > table(df$genotype, df$status)
diseased healthy

) Alpha — 005 mutant 5 9

WT 7 7
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Comparing two groups
no covariates

Paired Un-paired ScenarIO 2
mﬁ? L * You have categorized plants from two
TJ genotypes as diseased or healthy and you
o) (NS | ((MoNemar Chi- | want to understand if there is an interaction
L[':’;"ni“:;i?sg"“’”} between genotype and disease.
ﬁﬁuﬁﬁ
[ | Power Analysis

To calculate power we need:
« Effect size =
* N=5+9+7+7 =28
° DF — ( _1)*(2_1):1 > table(df$genotype, df$status)

Ldiseased healthy J

* Alpha =0.05 nutant s

WT
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Comparing two groups
no covariates

== Scenario 2
|

R0~ * You have categorized plants from two
TJ genotypes as diseased or healthy and you
o) (NS | ((MoNemar Chi- | want to understand if there is an interaction
L[':’;"ni“:;i?sg"“’”} between genotype and disease.

> p <- table(df$genotype, dfS$status)

L L
_Rﬁ,l ) |~ﬂ)_‘ _ b
ﬂj Power Analysis

diseased healthy

mutant 5 9

To calculate power we need: " O

>p <- p / sum(p)

« Effect size = 0.144 (x? stat)
diseased healthy

® — — mutant 0.1785714 0.3214286
N 5+9+7+7 28 WT 0.2500000 0.2500000

> p_1 <- rowSums(p)

* DF — ( '1)*(2'1):1 > p_j <- colSums(p)
> PO <- p_1 %*% t(p_j)
° Alpha — 005 > sqrt( sum( (p - PO)*2 / PO) )

[1] 0.1443376
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Comparing two groups
no covariates

— Scenario 2

Paired Un-paired

T |

=a)(0] (W) * You have categorized plants from two
| genotypes as diseased or healthy and you
o/ (NS | | Metiemar ohi- | want to understand if there is an interaction
Mmﬁm?mﬂ between genotype and disease.
DO a8 5 Analvsi
Jm ower Analysis
Due to a small effect size we
would need a very large
sample to reach 80% power. T
. > pwr.chisq.test(w= ES.w2(p), effect
|n th|S data + N = 28, df=1, sig.level=0.05)Spower

we ()r1|)/ have  [t] ©.1190365
> pwr.chisq.test(w= ES.w2(p),

~12% pOwer. + df=1, power=0.80, sig.level=0.05)SN
[1] 376.7453
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Start

| ]
One group to Comparing two groups Comparing two or more Association of two S ‘ : e I l ar I O 3
specified value no covariates _ groups with covariates variables

* You have identified a gene that you expect
Increases plant height by about 15%. Based
on previous literature you expect WT to grow
to ~30cm (x3cm) in height and you want to
know how many replicates you’ll need of
your mutant, assuming you have to use a
less powerful non-parametric test.
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One group to
specified value

|_ | ' | ~|,_| ~|
RI|| O] N
o L * You have identified a gene that you expect
G| NG [ e iIncreases plant height by about 15%. Based

Scenario 3

- on previous literature you expect WT to grow
[Wicanen st to ~30cm (x3cm) in height and you want to
{ﬂnetsamme J know how many replicates you’ll need of

your mutant, assuming you have to use a
less powerful non-parametric test.

Why a Non-parametric?

Here we expect 1 gene to have
a strong effect on a phenotype,
that could push use from a
Normal to a Log-Normal
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One group to
specified value

L Scenario 3
[Ri|[ o[ N
o * You have identified a gene that you expect

G| NG [g;it-square\ Increases plant height by about 15%. Based
- on previous literature you expect WT to grow
[Wicanen st to ~30cm (x3cm) in height and you want to
{Efmme ] know how many rep_licates you’ll need of
your mutant, assuming you have to use a
less powerful non-parametric test.

Approx. Normal Approx. Log Normal
5000 Genes with U(-1, 1) Influence

4999 Genes with U(-1, 1) Influence, one gene that is sometimes U(90, 200)
6000

6000
4000
4000
2000
I I 2000
0 __-_lllllll IIIIlll- __JIIII|I ||II|IIIIII|IIIIII|I|II-—

-200

count
count

100 300
pheno
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One group to
specified value

B B
[RiJ[ o n]
o L * You have identified a gene that you expect
G| |NG| | [ Chi-square Increases plant height by about 15%. Based
- [LJ on previous literature you expect WT to grow
[Wicanen st to ~30cm (x3cm) in height and you want to
{E’Q‘;fﬂ”‘“'ﬂ J know how many rep_licates you’ll need of
your mutant, assuming you have to use a
less powerful non-parametric test.

Statistical Test

Scenario 3

We are comparing one group
to a specified value and using
a non-parametric test, which

takes us to the Wilcoxon test.
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One group to
specified value

| *’ Scenario 3

|_ | ' | ~|,_| ~|
RI|| O] N
o L * You have identified a gene that you expect
G| | NG| | (Chisquare iIncreases plant height by about 15%. Based
- [LJ on previous literature you expect WT to grow

[Wcaxon et to ~30cm (x3cm) in height and you want to
{ﬂnetsamme J know how many replicates you’ll need of

- your mutant, assuming you have to use a
less powerful non-parametric test.

Power Analysis

We have to simulate this one.
¢ U=
¢« =
* Distribution =T_4(u, 0)
S T71/115



One group to
specified value
A

Rt

Scenario 3

B B
[RiJ[ o[ N]
o L * You have identified a gene that you expect
G| |NG| | [ Chi-square Increases plant height by about . Based
- [LJ on previous literature you expect WT to grow
[Wicanen st to ~30cm (x3cm) in height and you want to
{E’Q‘;fﬂ”‘“'ﬂ J know how many rep_licates you’ll need of
your mutant, assuming you have to use a
less powerful non-parametric test.

Power Analysis g levet =990

repRange <- seq(5,25,2)
iter <- 5000
simdf<-do.call(rbind, lapply(repRange, function(n){

\AJ(B f\Ei\/EB t() ESirT]lJIEitEB tt]is; one. iter <- do.call(rbind, lapply(1:iter, function(i){

s1_1 <- extraDistr::rlst(n, 4, 34.5, 3)

° ” — 30* true_mu <- mean(sl_i)
bool <- wilcox.test(s1_i, mu=30)Sp.value < sig.level
_ data.frame(bool = bool, mu = true_mu)
* 0=3 1)
. . . data.frame(power=mean(itersbool), n=n, type="sim")
* Distribution = T_4(u, 0) 1)

Note here we use T for simplicity 721115



Scenario 3

'sig.level = 0.05 " - A t
e specify some hyperparameters
repRange <- seq(5,25,2) To control the simulation.

Liter <- 5000 )
simdf<-do.call(rbind, lapply(repRange, function(n){
iter <- do.call(rbind, lapply(1:iter, function(i){
sl 1 <- extraDistr::rlst(n, 4, 34.5, 3)
true mu <- mean(sl_1)
bool <- wilcox.test(s1l i, mu=30)Sp.value < sig.level
data.frame(bool = bool, mu = true mu)
1))
data.frame(power=mean(itersbool), n=n, type="sim")

1))
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Scenario 3

sig.level = 0.05 5000 times per each number of reps
repRange <- seq(5,25,2) We generate a sample of data and

. Record the mean.

iter <- 5000

simdf<-do.call(rbind, lapply(repRange, function(n){

iter <- do.call(rbind, lapply(1:iter, function(i){

sl 1 <- extraDistr::rlst(n, 4, 34.5, 3)
true mu <- mean(sl 1) ]
bool <- wilcox.test(s1l i, mu=30)Sp.value < sig.level
data.frame(bool = bool, mu = true mu)

1))

data.frame(power=mean(iterSbool), n=n, type="sim")

1))
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Scenario 3

sig.level = 0.05 We run our test and record the result.
repRange <- seq(5,25,2) Hemahehxnedexﬂaimbnnaﬂmwﬂw
The first few tests.

iter <- 5000
simdf<-do.call(rbind, lapply(repRange, function(n){
iter <- do.call(rbind, lapply(1:iter, function(i){
sl 1 <- extraDistr::rlst(n, 4, 34.5, 3)
true mu <- mean(sl_1)
bool <- wilcox.test(s1l i1, mu=30)Sp.value < sig.level]
data.frame(bool = bool, mu = true mu)

1))

data.frame(power=mean(iterSbool), n=n, type="sim")

1))
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One group to
specified value

| *’ Scenario 3

|_ | ' | ~|,_| ~|
RI|| O] N
o L * You have identified a gene that you expect
G| | NG| | (Chisquare iIncreases plant height by about 15%. Based
- [LJ on previous literature you expect WT to grow
[Wcaxon et to ~30cm (x3cm) in height and you want to
{ﬂnetsamme J know how many replicates you’ll need of
- your mutant, assuming you have to use a
less powerful non-parametric test.

Power Analysis

We have to simulate this one.
+ U =30*1.15
e 0=3
* Distribution =T_4(u, 0) j T T 1
S —TY TS




Scenario 3

1.00

0.75

Here we’'d check the power curve and
Conclude that having more than 10 reps
Should be sufficient.

0.25

0.00

5 10 15 20 25
Number of Reps
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Start

| L]
One group 10 Comparing two groups ' Comparing two or more Association of two S ‘ : e I l ar I O 4
specified value no covariates _ groups with covariates variables

* You noticed an interesting correlation
between root length and panicle weight as
part of a subgroup analysis. You don’t have
a statistically significant correlation and want

to know how many reps you'd need in a new
eXperiment [0 see one. Correlation Test P-value: 0.11

Observed Correlation: 0.71

[ ] L]
42

40

38

Plant Height

36

[ ]
34

14 16 18 20 22 24
Root Length
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& ™
Association of two
variables

e

i —— Scenario 4

Ri[ o] N]
- coningeney|  YOU noticed an interesting correlation
© e | lweicens’ | between root length and panicle weight as

Spearman
Correlation

part of a subgroup analysis. You don’t have
a statistically significant correlation and want

Linear y .
—[Regression J to know how many reps you'd need in a new
experiment [0 see one. Correlation Test P-value: 0.11
Observed Correlation: 0.71
Statistical Test . ‘ ‘
We are explicitly interested in a 0|

correlation test here.

38

Plant Height

36

[ ]
34

14 16 18 20 22 24
Root Length
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& ™

Association of two
variables

e

i —— Scenario 4

&1 5 O
— coningeny | YOU NOticed an interesting correlation
o e [aamcews | phetween root length and panicle weight as
[Eﬂfriﬁ?t?o”n J part of a subgroup analysis. You don’t have
a statistically significant correlation and want
Linear y .
—[Regression J to know how many reps you'd need in a new
experiment [0 see one. Correlation Test P-value: 0.11
Observed Correlation: 0.71
Power Analysis . ‘ ‘
To calculate reps we need: 0|
- Power z
- Alpha :
- Effect size (correlation) oo

34

14 16 18 20 22 24
Root Length
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& ™
{ Association of two

variables .
[ Scenario 4
R ‘1”—

— coineney]  YOU NOtiCced an interesting correlation
o e | [memeens | between root length and panicle weight as
[Eﬂfriﬁ?t?o”n J part of a subgroup analysis. You don’t have
a statistically significant correlation and want
Linear y .
—[Regression J to know how many reps you'd need in a new
experiment to see one.
Power Analysis
TO Calculate reps We need. : pwr.r.test(glier::;t{vg : ?;Siizzg;;evel = 0.05, power = 0.8,
—_ Power approximate correlation power calculation (arctangh transformation)
n = 12.45543
- Alpha r = 0.708

sig.level = 0.05
power = 0.8

- Eﬂ:eCt Slze (COrrelathn) alternative = two.sided
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Association of two
variables
e

i — Scenario 4

RIO[N
— = o You noticed an interesting correlation
28 costicens | hetween root length and panicle weight as
[Eﬂfriﬁ?t?o”n J part of a subgroup analysis. You don’t have
| a statistically significant correlation and want
—| et on | to know how many reps you’d need in a new

experiment t0 see one.

Reps Needed for 80% Power

Here we show the effect size
on Y as though it were a
function of the number of reps
needed to reach 80% power.

0.8

Correlation
o
(2]

0.4

This is a little different,
remember any aspect can be
the Outcome_ ’ ® Iiloumberof Replic7:5ates . =
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Start

| L]
One group to Comparing two groups Comparing two or more | Association of two S ‘ : e n ar I O 5
specified value no covariates _ groups with covariates variables

* You want to test the difference in two
genotypes growth rates under early heat
stress over 25 days of imaging. You expect a
difference of ~10cm? in size at the end of the
experiment and relatively minor differences
In growth rate and inflection.

How many reps do you need assuming a
logistic growth model?

Simulated Data




Comparing two or more
groups with covariates
\\

)

No block With block ScenarIO 5
effects effects
Non  Tempora * You want to test the difference in two
| genotypes growth rates under early heat
ST stress over 25 days of imaging. You expect a
& 00 o difference of ~10cm? in size at the end of the
She | experiment and relatively minor differences
L Probitlink || In growth rate and inflection.
[Transform link F ]
(dentitylink | How many reps do you need assuming a
Bemam | logistic growth model?

Model Building Simulated Data




Comparing two or more
groups with covariates
‘\ J

oo win b Scenario 5

effects effects

Non  Tempora * You want to test the difference in two
| genotypes growth rates under early heat
ST stress over 25 days of imaging. You expect a
& 00 o difference of ~10cm? in size at the end of the
She | experiment and relatively minor differences
L Probitlink || In growth rate and inflection.
[Transform link F ]
(dentitylink | How many reps do you need assuming a
ongiudina logistic growth model?

Model Building Simulated Data

Statistical Test

We have temporal data and
will need to build a longitudinal
model.




Comparing two or more
groups with covariates
‘\ J

oo win b Scenario 5

effects effects

Non  Tempora * You want to test the difference in two
| genotypes growth rates under early heat
ST stress over 25 days of imaging. You expect a
& 00 o difference of ~10cm? in size at the end of the
She | experiment and relatively minor differences
L Probitlink || In growth rate and inflection.
[Transform link F ]
(dentitylink | How many reps do you need assuming a
Bemam | logistic growth model?
Model Building Simulated Data
Power Analysis

This Is a case where we have
to use a simulation.




Comparing two or more
groups with covariates
N J

No block With block ScenarIO 5
effects effects
Non - Temporal * You want to test the difference in two
empora
\ genotypes growth rates under early heat
h Feeee stress over 25 days of imaging. You expect a
& 00 o difference of ~10cm? in size at the end of the
Sne | experiment and relatively minor differences
L Probitiink | In growth rate and inflection.
[Transform link F ]
(dentitylink | How many reps do you need assuming a
— logistic growth model? > library(pevr)
Model Building >
> repRange <- seq(5,35,5)
i > Al <- 180
. > Bl <- 12
Power Analysis L < 3
.. > A2 <- 170
This Is a case where we have > B2 <- 13
to use a simulation. > (2 <- 3.5
> sig.level <- 0.05
> 1ter = 1000
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Comparing two or more
groups with covariates

— 1

No block With block

effects effects

R

Non Temporal
Temporal

|

Variable

Al;;k;l

o N

i = M
L Probit link ]—

[ Transform link F
Identity link |

Longitudinal |
Model Building

Scenario 5

res <- do.call(rbind, lapply(repRange, function(n){
inner <- parallel::mclapply(1:iter, function(i){

df <- growthSim("logistic", n=n, t=25,
params = list("A"=c(A1, A2), "B"=c(B1, B2), "C"=c(C1, C2)))
ss <- suppressMessages(growthSS("logistic", y ~ time|id/group, df = df, type="nls"))
m <- fitGrowth(ss)
t <- testGrowth(ss, m, test = list("A2 - A1", "B2 - B1", "C2 - C1"))
asymp_test <- t[1,"p-value"]<sig.level
infl_test <- t[2,"p-value"]<sig.level
rate_test <- t[3,"p-value"]<sig.level
return(list("A" = asymp_test, "B" = infl_test, "C"=rate_test))

}, mc.cores = 10)

asymp <- unlist(lapply(inner, function(o) 0%5A))

infl <- unlist(lapply(inner, function(o) 0$B))

rate <- unlist(lapply(inner, function(o) 05C))

data.frame(n = n, A = mean(asymp), B = mean(infl), C = mean(rate))

Power Analysis

This Is a case where we have
to use a simulation.




For each N In our rep range, iterate

res <-|do.call(rbind, lapply(repRange, function(n){
inne(_<- parallel::mclapply(1:iter, function(i){
df <- growthSim("logistic", n=n, t=25,
params = list("A"=c(A1, A2), "B"=c(B1, B2), "C"=c(C1, C2)))
ss <- suppressMessages(growthSS("logistic", y ~ time|id/group, df = df, type="nls"))
m <- fitGrowth(ss)
t <- testGrowth(ss, m, test = list("A2 - A1", "B2 - B1", "C2 - C1"))
asymp_test <- t[1,"p-value"]<sig.level
infl_test <- t[2,"p-value"]<sig.level
rate_test <- t[3,"p-value"]<sig.level
return(list("A" = asymp _test, "B" = infl _test, "C"=rate test))
}, mc.cores = 10)
asymp <- unlist(lapply(inner, function(o) 0SA))
infl <- unlist(lapply(inner, function(o) o$B))
rate <- unlist(lapply(inner, function(o) 05C))
data.frame(n = n, A = mean(asymp), B = mean(infl), C = mean(rate))

1))
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Simulate a dataset

res <- do. call(rblnd lapply(repRange function(n){
inner <- : : function(i){
df <- growthSim("logistic", n=n, t=25,
params = list("A"=c(A1, A2), "B"=c(B1, B2), "C"=c(C1, C2)))
ss <- suppressMessages(growthSS("logistic", y ~ time|id/group, df = df, type=|nls"))
<- fitGrowth(ss)
t <- testGrowth(ss, m, test = list("A2 - A1", "B2 - B1", "C2 - C1"))
asymp_test <- t[1,"p-value"]<sig.level
infl_test <- t[2,"p-value"]<sig.level
rate_test <- t[3,"p-value"]<sig.level
return(list("A" = asymp _test, "B" = infl _test, "C"=rate test))
}, mc.cores = 10)
asymp <- unlist(lapply(inner, function(o) 0SA))
infl <- unlist(lapply(inner, function(o) o$B))
rate <- unlist(lapply(inner, function(o) 05C))
data.frame(n = n, A = mean(asymp), B = mean(infl), C = mean(rate))

1))

Note that these datasets have
Some sampling variation, set to
1/10th of the mean for each
Parameter.
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Fit a model

res <- do.call(rbind, lapply(repRange, function(n){

inner <- parallel::mclapply(1:iter, function(i){

df <- growthSim("logistic", n=n, t=25,
params = list("A"=c(A1, A2), "B"=c(B1, B2), "C"=c(C1, C2)))

ss <- suppressMessages(growthSS("logistic", y ~ time|id/group, df = df, type="nls"))
m <- fitGrowth(ss)
t <- testGrowth(ss, m, test = list("A2 - A1", "B2 - B1", "C2 - C1"))
asymp_test <- t[1,"p-value"]<sig.level
infl_test <- t[2,"p-value"]<sig.level
rate_test <- t[3,"p-value"|<sig.level
return(list("A" = asymp _test, "B" = infl _test, "C"=rate test))

}, mc.cores = 10)

asymp <- unlist(lapply(inner, function(o) 0SA))

infl <- unlist(lapply(inner, function(o) o$B))

rate <- unlist(lapply(inner, function(o) 05C))

data.frame(n = n, A = mean(asymp), B = mean(infl), C = mean(rate))

1))
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Record test results

res <- do.call(rbind, lapply(repRange, function(n){

inner <- parallel::mclapply(1:iter, function(i){
df <- growthSim("logistic", n=n, t=25,

params = list("A"=c(A1, A2), "B"=c(B1, B2), "C"=c(C1, C2)))

ss <- suppressMessages(growthSS("logistic", y ~ time|id/group, df = df, type="nls"))
m <- fitGrowth(ss)

t <- testGrowth(ss, m, test = list("A2 - A1", "B2 - B1", "C2 - C1"))
rasymp_test <- t[1,"p-value"|<sig.level )
infl_test <- t[2,"p-value"]<sig.level

rate_test <- t[3,"p-value"|<sig.level
kreturn(list(”A” = asymp_test, "B" = infl _test, ”C":rate_test)}J
}, mc.cores = 10)
asymp <- unlist(lapply(inner, function(o) 0SA))
infl <- unlist(lapply(inner, function(o) o$B))
rate <- unlist(lapply(inner, function(o) 05C))
data.frame(n = n, A = mean(asymp), B = mean(infl), C = mean(rate))

1))
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Summarize results by N reps

res <- do.call(rbind, lapply(repRange, function(n){
inner <- parallel::mclapply(1:iter, function(i){
df <- growthSim("logistic", n=n, t=25,
params = list("A"=c(A1, A2), "B"=c(B1, B2), "C"=c(C1, C2)))
ss <- suppressMessages(growthSS("logistic", y ~ time|id/group, df = df, type="nls"))
m <- fitGrowth(ss)
t <- testGrowth(ss, m, test = list("A2 - A1", "B2 - B1", "C2 - C1"))
asymp_test <- t[1,"p-value"]<sig.level
infl_test <- t[2,"p-value"]<sig.level
rate_test <- t[3,"p-value"]<sig.level
return(list("A" = asymp _test, "B" = infl _test, "C"=rate test))
}, mc.cores = 10)
'ésymp <- unlist(lapply(inner, function(o) o0SA))
infl <- unlist(lapply(inner, function(o) o$B))
rate <- unlist(lapply(inner, function(o) 05C))
\gata.frame(n = n, A = mean(asymp), B = mean(infl), C = mean(rate);

1)
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Comparing two or more
groups with covariates

— 1

N\

)

No block With block
effects effects
Non Temporal
Temporal
ﬁ \
Pairwise Response
- Variable
Tt
\RI\ o N

G NG Logltllnk —

L Probit link ]—
[ Transform link F
Identity link |

Longitudinal
Model Building

Scenario 5

e

Power

—— Asymptote

—— Inflection
Rate

0.4

10 20 30
Number of Reps (Each Group)

Power Analysis

This Is a case where we have
to use a simulation.




Comparing two or more
groups with covariates

— 1

)

No block With block
effects effects
Non Temporal
Temporal
h \
Pairwise Response
- Variable
Tt
Rl 0 N
—

G NG
L  Probitlink |

[ Transform link F
Identity link |

Longitudinal
Model Building

Scenario 5

e

Power

—— Asymptote

—— Inflection
Rate

0.4

10 20 30
Number of Reps (Each Group)

Power Analysis

But here we input fixed
parameters, what if we don’t
have that information?




Comparing two or more
groups with covariates
/

— 1

No block With block
effects effects

R

Non Temporal
Temporal

|
ﬁ R
Pairwise esponse
Painvise  Respon

S I

R (ol N

NG
L  Probitlink |
{ Transform link F
Identity link |

G NG
Longitudinal
Model Building

Scenario 5

* |Instead of A1 = 180 we now will say A; ~
N(180, 5)

A, ~ N(160,5)

B, ~ N(12, 1)

B, ~ N(13, 1)

C: ~ N(3, 0.25)
C. ~ N(3.5, 0.25)

Power Analysis




|
e N\
Comparing two or more
groups with covariates

oo win b Scenario 5

effects effects

l res2 <- do.call(rbind, lapply(repRange, function(n){

inner <- parallel::mclapply(1:iter, function(i){

qgigporal Temporal Al <- rnorm(1, 180, 5)
A2 <- rnorm(1, 160, 5)
‘ Bl <- rnorm(1, 12, 1)
‘ Response B2 <- rnorm(1, 13, 1)
Variable C1 <- rnorm(1, 3, 0.25)
ot €2 <- rnorm(1, 3.5, 0.25)
‘ ,I‘ ‘ ()‘ ‘ h]‘ df <- growthSim("logistic", n=n, t=25,

params = list("A"=c(A1, A2), "B"=c(B1, B2), "C"=c(C1, C2)))

| Loqit link | ss <- suppressMessages(growthSS("logistic", y ~ time|id/group, df = df, type="nls"))
G NG ogitiin m <- fitGrowth(ss)

[ Probit link ]4447 t <- testGrowth(ss, m, test = list("A2 - A1", "B2 - B1", "C2 - C1"))
asymp_test <- t[1,"p-value"]<sig.level
['TranSforn1|"1k }“" infl_test <- t[2,"p-value"]<sig.level
{Identnylh1k rate_test <- t[3,"p-value"]<sig.level

L return(list("A" = asymp_test, "B" = infl_test, "C"=rate_test))
}, mc.cores = 10)
Longitudinal asymp <- unlist(lapply(inner, function(o) 03%5A))

Model Building infl <- unlist(lapply(inner, function(o) 03%B))
rate <- unlist(lapply(inner, function(o) 05C))
data.frame(n = n, A = mean(asymp), B = mean(infl), C = mean(rate))
1)
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Scenario 5

res2 <- do.call(rbind, lapply(repRange, function(n ..
inner <- parallel::mclapply(1:iter, function(i){m This is the Only Change we made. R
(Al <- rnorm(1, 180, 5) )
A2 <- rnorm(1, 160, 5) But where do we get these distributions?
Bl <- rnorm(1, 12, 1)
B2 <- rnorm(1, 13, 1) In practice this is similar to developing
C1 <- rnorm(1, 3, 0.25) priors for a Bayesian model. It relies on
\(2 <- rnorm(1, 3.5, 0.25)) your expertise and understanding some.)
df <- growthSim("logistic", n=n, t=25,
params = list("A"=c(Al1l, A2), "B"=c(B1, B2), "C"=c(C1, C2)))
ss <- suppressMessages(growthSS("logistic", y ~ time|id/group, df = df, type="nls"))
m <- fitGrowth(ss)
t <- testGrowth(ss, m, test = list("A2 - A1", "B2 - B1", "C2 - C1"))
asymp_test <- t[1,"p-value"]<sig.level
infl test <- t[2,"p-value"]<sig.level
rate_test <- t[3,"p-value"]<sig.level
return(list("A" = asymp_test, "B" = infl_test, "C"=rate_test))
}, mc.cores = 10)
asymp <- unlist(lapply(inner, function(o) 0%A)) These datasets now have population
infl <- unlist(lapply(inner, function(o) 03B)) Variation AND sampling variation

rate <- unlist(lapply(inner, function(o) 05C))
data.frame(n = n, A = mean(asymp), B = mean(infl), C = mean(rate))

)
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Simulation Parameters and Priors

* There is more discussion about priors in the Stats in pcvr
workshop.

* “Hard Headed” priors are generally suggested in the Bayesian
literature.

— To make this more concrete we’ll anthropomorphize some
distributions.
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Strong Priors

* Negative: This guy has OPINIONS and they are
not going to change based on your paltry
“evidence”

* Positive: This guy Is far from gullible, he will not
exaggerate and aggrandize bad information.
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Strong Priors
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Mild (weak) Priors

* Negative: This guy Is not a domain expert, he Is
not very sure about what to expect. If you don’t
have much (data) to contribute then your
conclusions will be limited.

e Positive: This guy knows he is not a domain
expert, he is able to contribute to a
conversation and collaborate without talking
over the evidence you present.
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Mild (weak) Priors

dens
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Mild (weak) Priors
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Flat Priors

* Negative: This guy doesn’t understand the
world at all. He contributes nothing to the

conversation and was only invited to round out
the numbers.

* Positive: “Unbiased” in the eyes of many

people, but those people are confusing
“unbiased” with “ignorant”.
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Flat Priors
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Priors vs Simulations

dens
OO—~—
[@]é)[e]é)]

10.0 12.5 15.0

. 1 2 3 4 5
e N support

- The most important difference

Here is that priors are updated strong 1 [ Mid 1 [ Fiat

With your experiment’s data. Strong 2 . Mild 2 Flat 2

In the simulation, the distribution
is all you have, so having pilot

- Data becomes very important. |
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Comparing two or more
groups with covariates

N\

)

oo win b Scenario 5

effects effects
Non Temporal
Temporal
|
W Response
- Variable
Tt
\RI\ o N

G NG Logltllnk —

L Probit link ]—
[ Transform link F

0.6
{ Identity link ]7 —— Asymptote N()

—— Inflection N()

Rate N()

Longitudinal 0.5

Model Building

b Number of Re;g (Each Group) ”
Power Analysis

* Now we have very different
power curves
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|
e N\
Comparing two or more
groups with covariates

oo win b Scenario 5

effects effects
distribution based fixed parameters
Non Temporal
Temporal 1.0
i e Z
Pairwise Response
- Variable
Yt
08 ——f et e e e S e
R o) [V
—

G NG Logitlink |

L  Probitlink |
[Transform link F 0.6
{ Identity link Ji, / —— Asymptote

Power

—— |Inflection

Longitudinal | Rate
Model Building 04
10 20 30 10 20 30
Number of Reps (Each Group)

e These new curves can be

Power Analysis =
much more realistic,

* Now we have very different depending on your
power curves assumptions.
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Comparing two or more
groups with covariates

‘ No block ‘ With block
effects effects

Scenario 5

J

Pairwise _ ‘
Variable 140

, N
e
&\

Non Temporal 0.08

Temporal ‘ ‘ 0.06

0.04

‘ 0.02

\ Response 0.00
P

o= e - s
R0 N

0.3

0.2

[  Probitlink | 0.0
10.0
—— - @0 ]
ldentity link

1.5

1.0

Longitudinal 05
Model Building 0.0

1 2
[ ]

Your Assumptions

* Think about what you build into
the simulation

160
1

200

180
25 15.0
C

‘ m:

3 4 5
support

Here it’s very clear why our
asymptote test is higher power,
there is less overlap in our
simulated parameters.
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Simulations need guidance

e Setting parameters for simulations requires some
expectation of what you could see.

— This can be a similar process conceptually to setting
priors for Bayesian analyses.

* Randomness is introduced by simulating data per each
iteration or sampling a total dataset per simulation.

— Your results will be as generalizable as your simulated
data.

* |f you are aiming to reach a precise power cutoff then this
Involves iterating over sample sizes.
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End of Scenarios

Start

\
p
One group to
specified value

N

Comparing two groups

( no covariates

N Ve ‘
Comparing two or more
groups with covariates

[T1 T T

(Ri)[ 0] —NL‘
test

Wilcoxon test

One sample
t-test

Paired Un-paired

N B IRI|| O]
RITOIN T
G NG McNemar Chi-
square test c NG
‘ Wilcoxon signed
rank test Unequal
- variance t-test
Paired t-test
Wilcoxon

rank sum test

No block With block
effects effects
Non Temporal
Temporal

|
Variable
B e —

p )
Association of two
variables

11

R

o \N/ﬁ
Contingency

Spearman
} Correlation
Linear
Regression

) L Probit link | —
N
J Transform link
Identity link
—‘ ‘E‘ - Ratio, Interval
Longitudinal | Model i
Model Building Building ‘ G - Gaussian
Fixed Random NG - Not Gaussian
Effects effects -
1 | | 'O -Ordinal
Fisher or Chi- M} Correlation am Nominal
Squared test Structure ‘ NJ - Nomina

* If the outcome and main predictor are both two-level factors, Breslow-Day and Cochren-Mantel-Hanzel tests are better
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Conclusion

e Are there other questions about this content?
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Conclusion

* Results are a function of statistical power

— Statistical power Is a function of experimental
design, methods, and replication.

- Methods are a function of time
— Replication Is a function of money

* You will have to optimize the utility function of
conclusions ~ time + money for your own

research. There is no formulaic approach to that
problem.
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Conclusion

* Power Is a function of experimental design
through effect sizes, replication, and
assumptions.

* Planning experiments while keeping statistical
power in mind will help you when it comes time
to analyze data.

* Both formulaic and simulation based power
analyses have their place and can be useful.
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