
Made with Scribe - https://scribehow.com 1

How to Parallelize Your Workflows Using PlantCV
- Single Images
This guide provides step-by-step instructions on how to parallelize single plant
phenotyping workflows using PlantCV. By following these steps, users can optimize
their workflow efficiency and increase productivity.

1 Often you will start with a workflow from another tutorial that you will have then
edited to work well for your experiment. Here we assume that you start with an
.ipynb workflow that runs without errors on several representative test images.
Ideally you have trained your workflow using a step-up image training protocol
(i.e. training your workflow on 1 image > 2
images > 4 images > 10 images > 20 images)

NOTE: Make sure you have ran your workflow and have produced a JSON output
file.

Made with Scribe - https://scribehow.com 2

2 Convert your Jupyter Notebook (.ipynb) to an executable script (a Python script
.py) selecting File > Save and Export Notebook As... > Executable Script

Save your Python script in the same directory as your Jupyter notebook for easy
access. You may need to adjust the title of your script so it is concise (in the
example, I am using a reference document and do not want "reference" in my
final script.

Made with Scribe - https://scribehow.com 3

3 Right-click on the notebook version of your workflow and select Shut Down
Kernel. This will help conserve resources while your script is being executed in
parallel. If you have additional notebooks that are active, shut down those kernels
as well by visiting the Running Terminals and Kernels button on the left side of
the screen (Green Circle).

Made with Scribe - https://scribehow.com 4

4 Open your new Python script. We will have to make some edits to make it a
functioning workflow script.

The first thing we will want to do is "comment out" things we do not want to run in
parallel. In the example image this would mean adding an "#" ahead of line 7:
get_python().run_line_magic('matplotlib', 'widget')

You can use the hotkey Ctrl + / or Cmd + / (depending on your operating system)
to comment the whole line out.

5 We need to make a change to our import statements to say:

from plantcv.parallel import workflow_inputs in place of from plantcv.parallel
import WorkflowInputs

This will tell the parallel process to use workflow_inputs() to set parameters based
on the configuration JSON file instead of using the hard coded arguments from
the notebook.

Made with Scribe - https://scribehow.com 5

6 Next, we will change our argument definitions for this workflow by "commenting
out" the our WorkflowInputs parameters. Remember that you can comment out
an entire section by using CTRL or Cmd + / in Jupyter.

See the image below:

7 For your workflow you may also want to comment out commands that only print
images or that look for Google Colab environments. You can use the hotkey Ctrl +
/ or Cmd + / (depending on your operating system) to comment the whole line
out.
Click here

Made with Scribe - https://scribehow.com 6

Made with Scribe - https://scribehow.com 7

8 Save the changes you made to your Python script.

Made with Scribe - https://scribehow.com 8

In the next step we will have to change the working directory in terminal to the
location where our scripts are. There are a couple of ways to obtain the file path
for your working directory:

 1. In Jupyter if you hover over the folder icon in the file browser it will show the working
directory.

 2. In Jupyter you can open a terminal and run `pwd` to print the working directory.

NOTE: You may want to copy the file path to a document so you can see how
much of the file path is copied (the full file path will not be copied).

Made with Scribe - https://scribehow.com 9

9 In this guide, the current working directory is local to the root directory, so we did
not need to change directories (See image below, outlined in green). Remember
that to change directories, you need to use the operator cd . If you haven't done
so already, activate your PlantCV environment by typing: conda activate plantcv

Once you have changed your working directory in conda, type dir or ls to view the
contents of the directory. Make sure that your Python script is in the correct
location. (See image below, outlined in orange).

10 Now we need to create our parallel configuration file by typing:

plantcv-run-workflow --template config.json

Since we have changed our working directory to our current folder, you should
see config.json appear in the file explorer like shown below.

11 Since we have changed our working directory to our current folder, you should
see config.json appear in the file explorer like shown below.

We will need to edit config.json so that we can configure the parallel analysis.
Right-click config.json and hover over Open With and select Editor to make
changes to the file.

Made with Scribe - https://scribehow.com 10

Made with Scribe - https://scribehow.com 11

12 In Editor, make changes to config.json , common things that should be changed
are listed below but the full set of options is in the documentation and is worth
reviewing.

 • "input_dir": "./imgs" [Put file path/name of input directory for images you want analyzed]

 • "json": "example_maize.json" [Put the path/name of the data output file (located in the args
container under results within your workflow)]

 • "filename_metadata": ["id", "genotype", "soiltype", "treatment", "timestamp"] [list of metadata
terms to collect. Supported metadata terms include: camera, imgtype, zoom, exposure, gain,
frame, lifter, timestamp, id, plantbarcode, treatment, cartag, measurementlabel, and other].
You can create custom metadata terms, see below.

 • "workflow": "multi-plant-workflow.py" [path/name of user-defined (your) PlantCV workflow
Python script]

 • "img_outdir": "./output_images" [path/name of output directory where measured images will
be stored. Default is "./output_images"]

 • "imgformat": "jpg" [image file format/extension. Default is "png"]

 • "delimiter": "(.+)(.+)(.+)+(.{1})(\d{4}-\d{2}-\d{2}\d{2}\d{2}\d{2})" [filename separator syntax for
collecting metadata terms above]

 • "timestampformat": "%Y-%m-%d_%H_%M_%S" [date format as observed in your naming
scheme. For explanation what each of the symbols mean, see the python time format
documentation]

 • "append": false [(bool, default = False): if True will append results to an existing json file. If
False, will delete previous results stored in the specified JSON file.]

 • "cluster": "LocalCluster" [There are several cluster types, the default option is "LocalCluster"
which will run in parallel on the machine you run the run workflow command from. The
complete list of options is: "LocalCluster", "HTCondorCluster", "LSFCluster",
"MoabCluster", "OARCluster", "PBSCluster", "SGECluster", and "SLURMCluster"
which can be read about in the dask docs.]

 • cluster_config:

 • n_workers: In the example below this is still 1, but you will increase this based on how
many cores you have available/want to use. This controls the number of workers to run in
parallel. The "cores" argument is how many cores each worker needs, which will almost always
stay as 1 which is considered sequential processing. Adding more workers will push it towards
multiprocessing (parallel execution).

https://plantcv.readthedocs.io/en/stable/parallel_config/
https://docs.python.org/3.7/library/datetime.html#strftime-and-strptime-behavior
https://docs.python.org/3.7/library/datetime.html#strftime-and-strptime-behavior
https://jobqueue.dask.org/

Made with Scribe - https://scribehow.com 12

Made with Scribe - https://scribehow.com 13

13 The metadata terms we defined in filename_metadata are not typically coded in
the configuration file, so we will need to customize the list for our needs. Scroll to
the bottom of the file and replace the metadata terms with those listed below so
they reflect the ones defined under filename_metadata .

Made with Scribe - https://scribehow.com 14

14 Save the changes you have made to the config.json

15 Now that we have made the necessary changes to our parallel configuration file, it
is time for us to run our workflow. To execute your parallel analysis, return to your
terminal and type plantcv-run-workflow --config config.json into the prompt.

Made with Scribe - https://scribehow.com 15

If you successfully set up your config.json then you should see a number of files
found and a progress bar on your screen with how long it will take to analyze your
dataset. You will also see that your job list will include X workflows.

If you did not set up your config.json then you will receive error messages that
detail where PlantCV is having issues finding an image directory, your workflow,
incorrect date formats, etc.

When the job has completed, you will see that PlantCV automatically converts the
JSON file into a CSV so you can carry the data over to whichever statistical analysis
software.

Made with Scribe - https://scribehow.com 16

16 You should see two CSV files appear in your directory:

 • example-maize.json-single-value-traits.csv

 • example-maize.json-multi-value-traits.csv

The single-value-traits.csv file will be in wide format, with a column per trait,
whereas the multi-value-traits.csv file will be in long format, with one row per
value/label. The hierarchical organization of these files enable more efficient data
processing downstream.

